|
|
|
|
|
from copy import copy |
|
|
|
from ultralytics.models import yolo |
|
from ultralytics.nn.tasks import SegmentationModel |
|
from ultralytics.utils import DEFAULT_CFG, RANK |
|
from ultralytics.utils.plotting import plot_images, plot_results |
|
|
|
|
|
class SegmentationTrainer(yolo.detect.DetectionTrainer): |
|
""" |
|
A class extending the DetectionTrainer class for training based on a segmentation model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.segment import SegmentationTrainer |
|
|
|
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml', epochs=3) |
|
trainer = SegmentationTrainer(overrides=args) |
|
trainer.train() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initialize a SegmentationTrainer object with given arguments.""" |
|
if overrides is None: |
|
overrides = {} |
|
overrides['task'] = 'segment' |
|
super().__init__(cfg, overrides, _callbacks) |
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True): |
|
"""Return SegmentationModel initialized with specified config and weights.""" |
|
model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1) |
|
if weights: |
|
model.load(weights) |
|
|
|
return model |
|
|
|
def get_validator(self): |
|
"""Return an instance of SegmentationValidator for validation of YOLO model.""" |
|
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss', 'reg_loss' |
|
return yolo.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) |
|
|
|
def plot_training_samples(self, batch, ni): |
|
"""Creates a plot of training sample images with labels and box coordinates.""" |
|
plot_images(batch['img'], |
|
batch['batch_idx'], |
|
batch['cls'].squeeze(-1), |
|
batch['bboxes'], |
|
batch['masks'], |
|
paths=batch['im_file'], |
|
fname=self.save_dir / f'train_batch{ni}.jpg', |
|
on_plot=self.on_plot) |
|
|
|
def plot_metrics(self): |
|
"""Plots training/val metrics.""" |
|
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) |
|
|