|
|
|
|
|
from copy import copy |
|
|
|
from ultralytics.models import yolo |
|
from ultralytics.nn.tasks import PoseModel |
|
from ultralytics.utils import DEFAULT_CFG, LOGGER |
|
from ultralytics.utils.plotting import plot_images, plot_results |
|
|
|
|
|
class PoseTrainer(yolo.detect.DetectionTrainer): |
|
""" |
|
A class extending the DetectionTrainer class for training based on a pose model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.pose import PoseTrainer |
|
|
|
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml', epochs=3) |
|
trainer = PoseTrainer(overrides=args) |
|
trainer.train() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initialize a PoseTrainer object with specified configurations and overrides.""" |
|
if overrides is None: |
|
overrides = {} |
|
overrides['task'] = 'pose' |
|
super().__init__(cfg, overrides, _callbacks) |
|
|
|
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps': |
|
LOGGER.warning("WARNING โ ๏ธ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " |
|
'See https://github.com/ultralytics/ultralytics/issues/4031.') |
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True): |
|
"""Get pose estimation model with specified configuration and weights.""" |
|
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose) |
|
if weights: |
|
model.load(weights) |
|
|
|
return model |
|
|
|
def set_model_attributes(self): |
|
"""Sets keypoints shape attribute of PoseModel.""" |
|
super().set_model_attributes() |
|
self.model.kpt_shape = self.data['kpt_shape'] |
|
|
|
def get_validator(self): |
|
"""Returns an instance of the PoseValidator class for validation.""" |
|
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss' |
|
return yolo.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) |
|
|
|
def plot_training_samples(self, batch, ni): |
|
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" |
|
images = batch['img'] |
|
kpts = batch['keypoints'] |
|
cls = batch['cls'].squeeze(-1) |
|
bboxes = batch['bboxes'] |
|
paths = batch['im_file'] |
|
batch_idx = batch['batch_idx'] |
|
plot_images(images, |
|
batch_idx, |
|
cls, |
|
bboxes, |
|
kpts=kpts, |
|
paths=paths, |
|
fname=self.save_dir / f'train_batch{ni}.jpg', |
|
on_plot=self.on_plot) |
|
|
|
def plot_metrics(self): |
|
"""Plots training/val metrics.""" |
|
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) |
|
|