|
|
|
|
|
from typing import Any, Optional, Tuple, Type |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.nn.modules import LayerNorm2d, MLPBlock |
|
|
|
|
|
|
|
class ImageEncoderViT(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
img_size: int = 1024, |
|
patch_size: int = 16, |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
depth: int = 12, |
|
num_heads: int = 12, |
|
mlp_ratio: float = 4.0, |
|
out_chans: int = 256, |
|
qkv_bias: bool = True, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
act_layer: Type[nn.Module] = nn.GELU, |
|
use_abs_pos: bool = True, |
|
use_rel_pos: bool = False, |
|
rel_pos_zero_init: bool = True, |
|
window_size: int = 0, |
|
global_attn_indexes: Tuple[int, ...] = (), |
|
) -> None: |
|
""" |
|
Args: |
|
img_size (int): Input image size. |
|
patch_size (int): Patch size. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
depth (int): Depth of ViT. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_abs_pos (bool): If True, use absolute positional embeddings. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. |
|
global_attn_indexes (list): Indexes for blocks using global attention. |
|
""" |
|
super().__init__() |
|
self.img_size = img_size |
|
|
|
self.patch_embed = PatchEmbed( |
|
kernel_size=(patch_size, patch_size), |
|
stride=(patch_size, patch_size), |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
self.pos_embed: Optional[nn.Parameter] = None |
|
if use_abs_pos: |
|
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)) |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
block = Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
window_size=window_size if i not in global_attn_indexes else 0, |
|
input_size=(img_size // patch_size, img_size // patch_size), |
|
) |
|
self.blocks.append(block) |
|
|
|
self.neck = nn.Sequential( |
|
nn.Conv2d( |
|
embed_dim, |
|
out_chans, |
|
kernel_size=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(out_chans), |
|
nn.Conv2d( |
|
out_chans, |
|
out_chans, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(out_chans), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_embed(x) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
for blk in self.blocks: |
|
x = blk(x) |
|
return self.neck(x.permute(0, 3, 1, 2)) |
|
|
|
|
|
class PromptEncoder(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
image_embedding_size: Tuple[int, int], |
|
input_image_size: Tuple[int, int], |
|
mask_in_chans: int, |
|
activation: Type[nn.Module] = nn.GELU, |
|
) -> None: |
|
""" |
|
Encodes prompts for input to SAM's mask decoder. |
|
|
|
Args: |
|
embed_dim (int): The prompts' embedding dimension |
|
image_embedding_size (tuple(int, int)): The spatial size of the |
|
image embedding, as (H, W). |
|
input_image_size (int): The padded size of the image as input |
|
to the image encoder, as (H, W). |
|
mask_in_chans (int): The number of hidden channels used for |
|
encoding input masks. |
|
activation (nn.Module): The activation to use when encoding |
|
input masks. |
|
""" |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.input_image_size = input_image_size |
|
self.image_embedding_size = image_embedding_size |
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) |
|
|
|
self.num_point_embeddings: int = 4 |
|
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)] |
|
self.point_embeddings = nn.ModuleList(point_embeddings) |
|
self.not_a_point_embed = nn.Embedding(1, embed_dim) |
|
|
|
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) |
|
self.mask_downscaling = nn.Sequential( |
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(mask_in_chans // 4), |
|
activation(), |
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), |
|
LayerNorm2d(mask_in_chans), |
|
activation(), |
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), |
|
) |
|
self.no_mask_embed = nn.Embedding(1, embed_dim) |
|
|
|
def get_dense_pe(self) -> torch.Tensor: |
|
""" |
|
Returns the positional encoding used to encode point prompts, |
|
applied to a dense set of points the shape of the image encoding. |
|
|
|
Returns: |
|
torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) |
|
""" |
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0) |
|
|
|
def _embed_points( |
|
self, |
|
points: torch.Tensor, |
|
labels: torch.Tensor, |
|
pad: bool, |
|
) -> torch.Tensor: |
|
"""Embeds point prompts.""" |
|
points = points + 0.5 |
|
if pad: |
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) |
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) |
|
points = torch.cat([points, padding_point], dim=1) |
|
labels = torch.cat([labels, padding_label], dim=1) |
|
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) |
|
point_embedding[labels == -1] = 0.0 |
|
point_embedding[labels == -1] += self.not_a_point_embed.weight |
|
point_embedding[labels == 0] += self.point_embeddings[0].weight |
|
point_embedding[labels == 1] += self.point_embeddings[1].weight |
|
return point_embedding |
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: |
|
"""Embeds box prompts.""" |
|
boxes = boxes + 0.5 |
|
coords = boxes.reshape(-1, 2, 2) |
|
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) |
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight |
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight |
|
return corner_embedding |
|
|
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: |
|
"""Embeds mask inputs.""" |
|
return self.mask_downscaling(masks) |
|
|
|
def _get_batch_size( |
|
self, |
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
boxes: Optional[torch.Tensor], |
|
masks: Optional[torch.Tensor], |
|
) -> int: |
|
""" |
|
Gets the batch size of the output given the batch size of the input prompts. |
|
""" |
|
if points is not None: |
|
return points[0].shape[0] |
|
elif boxes is not None: |
|
return boxes.shape[0] |
|
elif masks is not None: |
|
return masks.shape[0] |
|
else: |
|
return 1 |
|
|
|
def _get_device(self) -> torch.device: |
|
return self.point_embeddings[0].weight.device |
|
|
|
def forward( |
|
self, |
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
boxes: Optional[torch.Tensor], |
|
masks: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Embeds different types of prompts, returning both sparse and dense embeddings. |
|
|
|
Args: |
|
points (tuple(torch.Tensor, torch.Tensor), None): point coordinates and labels to embed. |
|
boxes (torch.Tensor, None): boxes to embed |
|
masks (torch.Tensor, None): masks to embed |
|
|
|
Returns: |
|
torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined |
|
by the number of input points and boxes. |
|
torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) |
|
""" |
|
bs = self._get_batch_size(points, boxes, masks) |
|
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) |
|
if points is not None: |
|
coords, labels = points |
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) |
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) |
|
if boxes is not None: |
|
box_embeddings = self._embed_boxes(boxes) |
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) |
|
|
|
if masks is not None: |
|
dense_embeddings = self._embed_masks(masks) |
|
else: |
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, |
|
1).expand(bs, -1, self.image_embedding_size[0], |
|
self.image_embedding_size[1]) |
|
|
|
return sparse_embeddings, dense_embeddings |
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module): |
|
""" |
|
Positional encoding using random spatial frequencies. |
|
""" |
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: |
|
super().__init__() |
|
if scale is None or scale <= 0.0: |
|
scale = 1.0 |
|
self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats))) |
|
|
|
|
|
torch.use_deterministic_algorithms(False) |
|
torch.backends.cudnn.deterministic = False |
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: |
|
"""Positionally encode points that are normalized to [0,1].""" |
|
|
|
coords = 2 * coords - 1 |
|
coords = coords @ self.positional_encoding_gaussian_matrix |
|
coords = 2 * np.pi * coords |
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) |
|
|
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor: |
|
"""Generate positional encoding for a grid of the specified size.""" |
|
h, w = size |
|
device: Any = self.positional_encoding_gaussian_matrix.device |
|
grid = torch.ones((h, w), device=device, dtype=torch.float32) |
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
y_embed = y_embed / h |
|
x_embed = x_embed / w |
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) |
|
return pe.permute(2, 0, 1) |
|
|
|
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: |
|
"""Positionally encode points that are not normalized to [0,1].""" |
|
coords = coords_input.clone() |
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1] |
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0] |
|
return self._pe_encoding(coords.to(torch.float)) |
|
|
|
|
|
class Block(nn.Module): |
|
"""Transformer blocks with support of window attention and residual propagation blocks""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = True, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
act_layer: Type[nn.Module] = nn.GELU, |
|
use_rel_pos: bool = False, |
|
rel_pos_zero_init: bool = True, |
|
window_size: int = 0, |
|
input_size: Optional[Tuple[int, int]] = None, |
|
) -> None: |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. If it equals 0, then |
|
use global attention. |
|
input_size (tuple(int, int), None): Input resolution for calculating the relative |
|
positional parameter size. |
|
""" |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
input_size=input_size if window_size == 0 else (window_size, window_size), |
|
) |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) |
|
|
|
self.window_size = window_size |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
if self.window_size > 0: |
|
H, W = x.shape[1], x.shape[2] |
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
x = self.attn(x) |
|
|
|
if self.window_size > 0: |
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) |
|
|
|
x = shortcut + x |
|
return x + self.mlp(self.norm2(x)) |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-head Attention block with relative position embeddings.""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = True, |
|
use_rel_pos: bool = False, |
|
rel_pos_zero_init: bool = True, |
|
input_size: Optional[Tuple[int, int]] = None, |
|
) -> None: |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (tuple(int, int), None): Input resolution for calculating the relative |
|
positional parameter size. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.use_rel_pos = use_rel_pos |
|
if self.use_rel_pos: |
|
assert (input_size is not None), 'Input size must be provided if using relative positional encoding.' |
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, H, W, _ = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) |
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
|
|
if self.use_rel_pos: |
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) |
|
return self.proj(x) |
|
|
|
|
|
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: |
|
""" |
|
Partition into non-overlapping windows with padding if needed. |
|
Args: |
|
x (tensor): input tokens with [B, H, W, C]. |
|
window_size (int): window size. |
|
|
|
Returns: |
|
windows: windows after partition with [B * num_windows, window_size, window_size, C]. |
|
(Hp, Wp): padded height and width before partition |
|
""" |
|
B, H, W, C = x.shape |
|
|
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) |
|
Hp, Wp = H + pad_h, W + pad_w |
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows, (Hp, Wp) |
|
|
|
|
|
def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], |
|
hw: Tuple[int, int]) -> torch.Tensor: |
|
""" |
|
Window unpartition into original sequences and removing padding. |
|
Args: |
|
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. |
|
window_size (int): window size. |
|
pad_hw (Tuple): padded height and width (Hp, Wp). |
|
hw (Tuple): original height and width (H, W) before padding. |
|
|
|
Returns: |
|
x: unpartitioned sequences with [B, H, W, C]. |
|
""" |
|
Hp, Wp = pad_hw |
|
H, W = hw |
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size) |
|
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) |
|
|
|
if Hp > H or Wp > W: |
|
x = x[:, :H, :W, :].contiguous() |
|
return x |
|
|
|
|
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Get relative positional embeddings according to the relative positions of |
|
query and key sizes. |
|
Args: |
|
q_size (int): size of query q. |
|
k_size (int): size of key k. |
|
rel_pos (Tensor): relative position embeddings (L, C). |
|
|
|
Returns: |
|
Extracted positional embeddings according to relative positions. |
|
""" |
|
max_rel_dist = int(2 * max(q_size, k_size) - 1) |
|
|
|
if rel_pos.shape[0] != max_rel_dist: |
|
|
|
rel_pos_resized = F.interpolate( |
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), |
|
size=max_rel_dist, |
|
mode='linear', |
|
) |
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) |
|
else: |
|
rel_pos_resized = rel_pos |
|
|
|
|
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) |
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) |
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) |
|
|
|
return rel_pos_resized[relative_coords.long()] |
|
|
|
|
|
def add_decomposed_rel_pos( |
|
attn: torch.Tensor, |
|
q: torch.Tensor, |
|
rel_pos_h: torch.Tensor, |
|
rel_pos_w: torch.Tensor, |
|
q_size: Tuple[int, int], |
|
k_size: Tuple[int, int], |
|
) -> torch.Tensor: |
|
""" |
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. |
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 |
|
Args: |
|
attn (Tensor): attention map. |
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). |
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. |
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. |
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). |
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). |
|
|
|
Returns: |
|
attn (Tensor): attention map with added relative positional embeddings. |
|
""" |
|
q_h, q_w = q_size |
|
k_h, k_w = k_size |
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h) |
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w) |
|
|
|
B, _, dim = q.shape |
|
r_q = q.reshape(B, q_h, q_w, dim) |
|
rel_h = torch.einsum('bhwc,hkc->bhwk', r_q, Rh) |
|
rel_w = torch.einsum('bhwc,wkc->bhwk', r_q, Rw) |
|
|
|
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( |
|
B, q_h * q_w, k_h * k_w) |
|
|
|
return attn |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Image to Patch Embedding. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
kernel_size: Tuple[int, int] = (16, 16), |
|
stride: Tuple[int, int] = (16, 16), |
|
padding: Tuple[int, int] = (0, 0), |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
) -> None: |
|
""" |
|
Args: |
|
kernel_size (Tuple): kernel size of the projection layer. |
|
stride (Tuple): stride of the projection layer. |
|
padding (Tuple): padding size of the projection layer. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
""" |
|
super().__init__() |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.proj(x).permute(0, 2, 3, 1) |
|
|