|
|
|
|
|
import torch |
|
|
|
from ultralytics.data.augment import LetterBox |
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import ops |
|
|
|
|
|
class RTDETRPredictor(BasePredictor): |
|
""" |
|
A class extending the BasePredictor class for prediction based on an RT-DETR detection model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.rtdetr import RTDETRPredictor |
|
|
|
args = dict(model='rtdetr-l.pt', source=ASSETS) |
|
predictor = RTDETRPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
""" |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Postprocess predictions and returns a list of Results objects.""" |
|
nd = preds[0].shape[-1] |
|
bboxes, scores = preds[0].split((4, nd - 4), dim=-1) |
|
results = [] |
|
is_list = isinstance(orig_imgs, list) |
|
for i, bbox in enumerate(bboxes): |
|
bbox = ops.xywh2xyxy(bbox) |
|
score, cls = scores[i].max(-1, keepdim=True) |
|
idx = score.squeeze(-1) > self.args.conf |
|
if self.args.classes is not None: |
|
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx |
|
pred = torch.cat([bbox, score, cls], dim=-1)[idx] |
|
orig_img = orig_imgs[i] if is_list else orig_imgs |
|
oh, ow = orig_img.shape[:2] |
|
if is_list: |
|
pred[..., [0, 2]] *= ow |
|
pred[..., [1, 3]] *= oh |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|
|
def pre_transform(self, im): |
|
"""Pre-transform input image before inference. |
|
|
|
Args: |
|
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. |
|
|
|
Notes: The size must be square(640) and scaleFilled. |
|
|
|
Returns: |
|
(list): A list of transformed imgs. |
|
""" |
|
return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im] |
|
|