|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .checks import check_version |
|
from .metrics import bbox_iou |
|
|
|
TORCH_1_10 = check_version(torch.__version__, '1.10.0') |
|
|
|
|
|
def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9): |
|
""" |
|
Select the positive anchor center in gt. |
|
|
|
Args: |
|
xy_centers (Tensor): shape(h*w, 4) |
|
gt_bboxes (Tensor): shape(b, n_boxes, 4) |
|
|
|
Returns: |
|
(Tensor): shape(b, n_boxes, h*w) |
|
""" |
|
n_anchors = xy_centers.shape[0] |
|
bs, n_boxes, _ = gt_bboxes.shape |
|
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) |
|
bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1) |
|
|
|
return bbox_deltas.amin(3).gt_(eps) |
|
|
|
|
|
def select_highest_overlaps(mask_pos, overlaps, n_max_boxes): |
|
""" |
|
If an anchor box is assigned to multiple gts, the one with the highest IoI will be selected. |
|
|
|
Args: |
|
mask_pos (Tensor): shape(b, n_max_boxes, h*w) |
|
overlaps (Tensor): shape(b, n_max_boxes, h*w) |
|
|
|
Returns: |
|
target_gt_idx (Tensor): shape(b, h*w) |
|
fg_mask (Tensor): shape(b, h*w) |
|
mask_pos (Tensor): shape(b, n_max_boxes, h*w) |
|
""" |
|
|
|
fg_mask = mask_pos.sum(-2) |
|
if fg_mask.max() > 1: |
|
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) |
|
max_overlaps_idx = overlaps.argmax(1) |
|
|
|
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device) |
|
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1) |
|
|
|
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() |
|
fg_mask = mask_pos.sum(-2) |
|
|
|
target_gt_idx = mask_pos.argmax(-2) |
|
return target_gt_idx, fg_mask, mask_pos |
|
|
|
|
|
class TaskAlignedAssigner(nn.Module): |
|
""" |
|
A task-aligned assigner for object detection. |
|
|
|
This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, |
|
which combines both classification and localization information. |
|
|
|
Attributes: |
|
topk (int): The number of top candidates to consider. |
|
num_classes (int): The number of object classes. |
|
alpha (float): The alpha parameter for the classification component of the task-aligned metric. |
|
beta (float): The beta parameter for the localization component of the task-aligned metric. |
|
eps (float): A small value to prevent division by zero. |
|
""" |
|
|
|
def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9): |
|
"""Initialize a TaskAlignedAssigner object with customizable hyperparameters.""" |
|
super().__init__() |
|
self.topk = topk |
|
self.num_classes = num_classes |
|
self.bg_idx = num_classes |
|
self.alpha = alpha |
|
self.beta = beta |
|
self.eps = eps |
|
|
|
@torch.no_grad() |
|
def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt, gt_regression): |
|
""" |
|
Compute the task-aligned assignment. |
|
Reference https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py |
|
|
|
Args: |
|
pd_scores (Tensor): shape(bs, num_total_anchors, num_classes) |
|
pd_bboxes (Tensor): shape(bs, num_total_anchors, 4) |
|
anc_points (Tensor): shape(num_total_anchors, 2) |
|
gt_labels (Tensor): shape(bs, n_max_boxes, 1) |
|
gt_bboxes (Tensor): shape(bs, n_max_boxes, 4) |
|
mask_gt (Tensor): shape(bs, n_max_boxes, 1) |
|
|
|
Returns: |
|
target_labels (Tensor): shape(bs, num_total_anchors) |
|
target_bboxes (Tensor): shape(bs, num_total_anchors, 4) |
|
target_scores (Tensor): shape(bs, num_total_anchors, num_classes) |
|
fg_mask (Tensor): shape(bs, num_total_anchors) |
|
target_gt_idx (Tensor): shape(bs, num_total_anchors) |
|
""" |
|
self.bs = pd_scores.size(0) |
|
self.n_max_boxes = gt_bboxes.size(1) |
|
|
|
if self.n_max_boxes == 0: |
|
device = gt_bboxes.device |
|
return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), |
|
torch.zeros_like(pd_bboxes).to(device), |
|
torch.zeros_like(pd_scores).to(device), |
|
torch.zeros_like(pd_scores[..., 0]).to(device), |
|
torch.zeros_like(pd_scores[..., 0]).to(device), |
|
None) |
|
|
|
mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, |
|
mask_gt) |
|
|
|
target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes) |
|
|
|
|
|
target_labels, target_bboxes, target_scores, regression_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask, gt_regression) |
|
|
|
|
|
align_metric *= mask_pos |
|
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True) |
|
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True) |
|
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) |
|
target_scores = target_scores * norm_align_metric |
|
|
|
return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx, regression_scores |
|
|
|
def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt): |
|
"""Get in_gts mask, (b, max_num_obj, h*w).""" |
|
mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes) |
|
|
|
align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt) |
|
|
|
mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool()) |
|
|
|
mask_pos = mask_topk * mask_in_gts * mask_gt |
|
|
|
return mask_pos, align_metric, overlaps |
|
|
|
def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt): |
|
"""Compute alignment metric given predicted and ground truth bounding boxes.""" |
|
na = pd_bboxes.shape[-2] |
|
mask_gt = mask_gt.bool() |
|
overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device) |
|
bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device) |
|
|
|
ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) |
|
ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) |
|
ind[1] = gt_labels.squeeze(-1) |
|
|
|
bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt] |
|
|
|
|
|
pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt] |
|
gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt] |
|
overlaps[mask_gt] = bbox_iou(gt_boxes, pd_boxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0) |
|
|
|
align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) |
|
return align_metric, overlaps |
|
|
|
def select_topk_candidates(self, metrics, largest=True, topk_mask=None): |
|
""" |
|
Select the top-k candidates based on the given metrics. |
|
|
|
Args: |
|
metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size, |
|
max_num_obj is the maximum number of objects, and h*w represents the |
|
total number of anchor points. |
|
largest (bool): If True, select the largest values; otherwise, select the smallest values. |
|
topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where |
|
topk is the number of top candidates to consider. If not provided, |
|
the top-k values are automatically computed based on the given metrics. |
|
|
|
Returns: |
|
(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates. |
|
""" |
|
|
|
|
|
topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest) |
|
if topk_mask is None: |
|
topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs) |
|
|
|
topk_idxs.masked_fill_(~topk_mask, 0) |
|
|
|
|
|
count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device) |
|
ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device) |
|
for k in range(self.topk): |
|
|
|
count_tensor.scatter_add_(-1, topk_idxs[:, :, k:k + 1], ones) |
|
|
|
|
|
count_tensor.masked_fill_(count_tensor > 1, 0) |
|
|
|
return count_tensor.to(metrics.dtype) |
|
|
|
def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask, gt_regression=None): |
|
""" |
|
Compute target labels, target bounding boxes, and target scores for the positive anchor points. |
|
|
|
Args: |
|
gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the |
|
batch size and max_num_obj is the maximum number of objects. |
|
gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4). |
|
target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive |
|
anchor points, with shape (b, h*w), where h*w is the total |
|
number of anchor points. |
|
fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive |
|
(foreground) anchor points. |
|
|
|
Returns: |
|
(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors: |
|
- target_labels (Tensor): Shape (b, h*w), containing the target labels for |
|
positive anchor points. |
|
- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes |
|
for positive anchor points. |
|
- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores |
|
for positive anchor points, where num_classes is the number |
|
of object classes. |
|
""" |
|
|
|
|
|
batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None] |
|
target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes |
|
target_labels = gt_labels.long().flatten()[target_gt_idx] |
|
|
|
|
|
target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx] |
|
|
|
|
|
target_labels.clamp_(0) |
|
|
|
|
|
target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes), |
|
dtype=torch.int64, |
|
device=target_labels.device) |
|
target_scores.scatter_(2, target_labels.unsqueeze(-1), 1) |
|
|
|
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) |
|
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0) |
|
|
|
if gt_regression is not None: |
|
target_regression = gt_regression.view(-1, 6)[target_gt_idx] |
|
|
|
|
|
fg_mask_bool = fg_mask.bool() |
|
|
|
|
|
fg_regression_mask = fg_mask_bool.unsqueeze(-1).repeat(1, 1, 6) |
|
|
|
|
|
target_regression = torch.where(fg_regression_mask, target_regression, torch.zeros_like(target_regression)) |
|
|
|
return target_labels, target_bboxes, target_scores, target_regression |
|
else: |
|
target_regression = None |
|
return target_labels, target_bboxes, target_scores, target_regression |
|
|
|
|
|
def make_anchors(feats, strides, grid_cell_offset=0.5): |
|
"""Generate anchors from features.""" |
|
anchor_points, stride_tensor = [], [] |
|
assert feats is not None |
|
dtype, device = feats[0].dtype, feats[0].device |
|
for i, stride in enumerate(strides): |
|
_, _, h, w = feats[i].shape |
|
sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset |
|
sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset |
|
sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx) |
|
anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2)) |
|
stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device)) |
|
return torch.cat(anchor_points), torch.cat(stride_tensor) |
|
|
|
|
|
def dist2bbox(distance, anchor_points, xywh=True, dim=-1): |
|
"""Transform distance(ltrb) to box(xywh or xyxy).""" |
|
lt, rb = distance.chunk(2, dim) |
|
x1y1 = anchor_points - lt |
|
x2y2 = anchor_points + rb |
|
if xywh: |
|
c_xy = (x1y1 + x2y2) / 2 |
|
wh = x2y2 - x1y1 |
|
return torch.cat((c_xy, wh), dim) |
|
return torch.cat((x1y1, x2y2), dim) |
|
|
|
|
|
def bbox2dist(anchor_points, bbox, reg_max): |
|
"""Transform bbox(xyxy) to dist(ltrb).""" |
|
x1y1, x2y2 = bbox.chunk(2, -1) |
|
return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01) |
|
|