|
|
|
|
|
import torch |
|
|
|
from ultralytics.data import ClassificationDataset, build_dataloader |
|
from ultralytics.engine.validator import BaseValidator |
|
from ultralytics.utils import LOGGER |
|
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix |
|
from ultralytics.utils.plotting import plot_images |
|
|
|
|
|
class ClassificationValidator(BaseValidator): |
|
""" |
|
A class extending the BaseValidator class for validation based on a classification model. |
|
|
|
Notes: |
|
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.classify import ClassificationValidator |
|
|
|
args = dict(model='yolov8n-cls.pt', data='imagenet10') |
|
validator = ClassificationValidator(args=args) |
|
validator() |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.targets = None |
|
self.pred = None |
|
self.args.task = 'classify' |
|
self.metrics = ClassifyMetrics() |
|
|
|
def get_desc(self): |
|
"""Returns a formatted string summarizing classification metrics.""" |
|
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc') |
|
|
|
def init_metrics(self, model): |
|
"""Initialize confusion matrix, class names, and top-1 and top-5 accuracy.""" |
|
self.names = model.names |
|
self.nc = len(model.names) |
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, task='classify') |
|
self.pred = [] |
|
self.targets = [] |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses input batch and returns it.""" |
|
batch['img'] = batch['img'].to(self.device, non_blocking=True) |
|
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float() |
|
batch['cls'] = batch['cls'].to(self.device) |
|
return batch |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Updates running metrics with model predictions and batch targets.""" |
|
n5 = min(len(self.model.names), 5) |
|
self.pred.append(preds.argsort(1, descending=True)[:, :n5]) |
|
self.targets.append(batch['cls']) |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Finalizes metrics of the model such as confusion_matrix and speed.""" |
|
self.confusion_matrix.process_cls_preds(self.pred, self.targets) |
|
if self.args.plots: |
|
for normalize in True, False: |
|
self.confusion_matrix.plot(save_dir=self.save_dir, |
|
names=self.names.values(), |
|
normalize=normalize, |
|
on_plot=self.on_plot) |
|
self.metrics.speed = self.speed |
|
self.metrics.confusion_matrix = self.confusion_matrix |
|
|
|
def get_stats(self): |
|
"""Returns a dictionary of metrics obtained by processing targets and predictions.""" |
|
self.metrics.process(self.targets, self.pred) |
|
return self.metrics.results_dict |
|
|
|
def build_dataset(self, img_path): |
|
return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split) |
|
|
|
def get_dataloader(self, dataset_path, batch_size): |
|
"""Builds and returns a data loader for classification tasks with given parameters.""" |
|
dataset = self.build_dataset(dataset_path) |
|
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1) |
|
|
|
def print_results(self): |
|
"""Prints evaluation metrics for YOLO object detection model.""" |
|
pf = '%22s' + '%11.3g' * len(self.metrics.keys) |
|
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5)) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plot validation image samples.""" |
|
plot_images( |
|
images=batch['img'], |
|
batch_idx=torch.arange(len(batch['img'])), |
|
cls=batch['cls'].view(-1), |
|
fname=self.save_dir / f'val_batch{ni}_labels.jpg', |
|
names=self.names, |
|
on_plot=self.on_plot) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots predicted bounding boxes on input images and saves the result.""" |
|
plot_images(batch['img'], |
|
batch_idx=torch.arange(len(batch['img'])), |
|
cls=torch.argmax(preds, dim=1), |
|
fname=self.save_dir / f'val_batch{ni}_pred.jpg', |
|
names=self.names, |
|
on_plot=self.on_plot) |
|
|