|
|
|
|
|
import torch |
|
import torchvision |
|
|
|
from ultralytics.data import ClassificationDataset, build_dataloader |
|
from ultralytics.engine.trainer import BaseTrainer |
|
from ultralytics.models import yolo |
|
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight |
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK, colorstr |
|
from ultralytics.utils.plotting import plot_images, plot_results |
|
from ultralytics.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first |
|
|
|
|
|
class ClassificationTrainer(BaseTrainer): |
|
""" |
|
A class extending the BaseTrainer class for training based on a classification model. |
|
|
|
Notes: |
|
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.classify import ClassificationTrainer |
|
|
|
args = dict(model='yolov8n-cls.pt', data='imagenet10', epochs=3) |
|
trainer = ClassificationTrainer(overrides=args) |
|
trainer.train() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initialize a ClassificationTrainer object with optional configuration overrides and callbacks.""" |
|
if overrides is None: |
|
overrides = {} |
|
overrides['task'] = 'classify' |
|
if overrides.get('imgsz') is None: |
|
overrides['imgsz'] = 224 |
|
super().__init__(cfg, overrides, _callbacks) |
|
|
|
def set_model_attributes(self): |
|
"""Set the YOLO model's class names from the loaded dataset.""" |
|
self.model.names = self.data['names'] |
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True): |
|
"""Returns a modified PyTorch model configured for training YOLO.""" |
|
model = ClassificationModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) |
|
if weights: |
|
model.load(weights) |
|
|
|
for m in model.modules(): |
|
if not self.args.pretrained and hasattr(m, 'reset_parameters'): |
|
m.reset_parameters() |
|
if isinstance(m, torch.nn.Dropout) and self.args.dropout: |
|
m.p = self.args.dropout |
|
for p in model.parameters(): |
|
p.requires_grad = True |
|
return model |
|
|
|
def setup_model(self): |
|
"""load/create/download model for any task""" |
|
if isinstance(self.model, torch.nn.Module): |
|
return |
|
|
|
model, ckpt = str(self.model), None |
|
|
|
if model.endswith('.pt'): |
|
self.model, ckpt = attempt_load_one_weight(model, device='cpu') |
|
for p in self.model.parameters(): |
|
p.requires_grad = True |
|
elif model.split('.')[-1] in ('yaml', 'yml'): |
|
self.model = self.get_model(cfg=model) |
|
elif model in torchvision.models.__dict__: |
|
self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if self.args.pretrained else None) |
|
else: |
|
FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.') |
|
ClassificationModel.reshape_outputs(self.model, self.data['nc']) |
|
|
|
return ckpt |
|
|
|
def build_dataset(self, img_path, mode='train', batch=None): |
|
return ClassificationDataset(root=img_path, args=self.args, augment=mode == 'train', prefix=mode) |
|
|
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): |
|
"""Returns PyTorch DataLoader with transforms to preprocess images for inference.""" |
|
with torch_distributed_zero_first(rank): |
|
dataset = self.build_dataset(dataset_path, mode) |
|
|
|
loader = build_dataloader(dataset, batch_size, self.args.workers, rank=rank) |
|
|
|
if mode != 'train': |
|
if is_parallel(self.model): |
|
self.model.module.transforms = loader.dataset.torch_transforms |
|
else: |
|
self.model.transforms = loader.dataset.torch_transforms |
|
return loader |
|
|
|
def preprocess_batch(self, batch): |
|
"""Preprocesses a batch of images and classes.""" |
|
batch['img'] = batch['img'].to(self.device) |
|
batch['cls'] = batch['cls'].to(self.device) |
|
return batch |
|
|
|
def progress_string(self): |
|
"""Returns a formatted string showing training progress.""" |
|
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \ |
|
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') |
|
|
|
def get_validator(self): |
|
"""Returns an instance of ClassificationValidator for validation.""" |
|
self.loss_names = ['loss'] |
|
return yolo.classify.ClassificationValidator(self.test_loader, self.save_dir) |
|
|
|
def label_loss_items(self, loss_items=None, prefix='train'): |
|
""" |
|
Returns a loss dict with labelled training loss items tensor. Not needed for classification but necessary for |
|
segmentation & detection |
|
""" |
|
keys = [f'{prefix}/{x}' for x in self.loss_names] |
|
if loss_items is None: |
|
return keys |
|
loss_items = [round(float(loss_items), 5)] |
|
return dict(zip(keys, loss_items)) |
|
|
|
def plot_metrics(self): |
|
"""Plots metrics from a CSV file.""" |
|
plot_results(file=self.csv, classify=True, on_plot=self.on_plot) |
|
|
|
def final_eval(self): |
|
"""Evaluate trained model and save validation results.""" |
|
for f in self.last, self.best: |
|
if f.exists(): |
|
strip_optimizer(f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") |
|
|
|
def plot_training_samples(self, batch, ni): |
|
"""Plots training samples with their annotations.""" |
|
plot_images( |
|
images=batch['img'], |
|
batch_idx=torch.arange(len(batch['img'])), |
|
cls=batch['cls'].view(-1), |
|
fname=self.save_dir / f'train_batch{ni}.jpg', |
|
on_plot=self.on_plot) |
|
|