|
|
|
|
|
import torch |
|
|
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import DEFAULT_CFG |
|
|
|
|
|
class ClassificationPredictor(BasePredictor): |
|
""" |
|
A class extending the BasePredictor class for prediction based on a classification model. |
|
|
|
Notes: |
|
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.yolo.classify import ClassificationPredictor |
|
|
|
args = dict(model='yolov8n-cls.pt', source=ASSETS) |
|
predictor = ClassificationPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = 'classify' |
|
|
|
def preprocess(self, img): |
|
"""Converts input image to model-compatible data type.""" |
|
if not isinstance(img, torch.Tensor): |
|
img = torch.stack([self.transforms(im) for im in img], dim=0) |
|
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) |
|
return img.half() if self.model.fp16 else img.float() |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Post-processes predictions to return Results objects.""" |
|
results = [] |
|
is_list = isinstance(orig_imgs, list) |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] if is_list else orig_imgs |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred)) |
|
return results |
|
|