|
|
|
|
|
from copy import copy |
|
|
|
import torch |
|
|
|
from ultralytics.models.yolo.detect import DetectionTrainer |
|
from ultralytics.nn.tasks import RTDETRDetectionModel |
|
from ultralytics.utils import RANK, colorstr |
|
|
|
from .val import RTDETRDataset, RTDETRValidator |
|
|
|
|
|
class RTDETRTrainer(DetectionTrainer): |
|
""" |
|
A class extending the DetectionTrainer class for training based on an RT-DETR detection model. |
|
|
|
Notes: |
|
- F.grid_sample used in rt-detr does not support the `deterministic=True` argument. |
|
- AMP training can lead to NaN outputs and may produce errors during bipartite graph matching. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.rtdetr.train import RTDETRTrainer |
|
|
|
args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3) |
|
trainer = RTDETRTrainer(overrides=args) |
|
trainer.train() |
|
``` |
|
""" |
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True): |
|
"""Return a YOLO detection model.""" |
|
model = RTDETRDetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) |
|
if weights: |
|
model.load(weights) |
|
return model |
|
|
|
def build_dataset(self, img_path, mode='val', batch=None): |
|
"""Build RTDETR Dataset |
|
|
|
Args: |
|
img_path (str): Path to the folder containing images. |
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. |
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. |
|
""" |
|
return RTDETRDataset( |
|
img_path=img_path, |
|
imgsz=self.args.imgsz, |
|
batch_size=batch, |
|
augment=mode == 'train', |
|
hyp=self.args, |
|
rect=False, |
|
cache=self.args.cache or None, |
|
prefix=colorstr(f'{mode}: '), |
|
data=self.data) |
|
|
|
def get_validator(self): |
|
"""Returns a DetectionValidator for RTDETR model validation.""" |
|
self.loss_names = 'giou_loss', 'cls_loss', 'l1_loss' |
|
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) |
|
|
|
def preprocess_batch(self, batch): |
|
"""Preprocesses a batch of images by scaling and converting to float.""" |
|
batch = super().preprocess_batch(batch) |
|
bs = len(batch['img']) |
|
batch_idx = batch['batch_idx'] |
|
gt_bbox, gt_class = [], [] |
|
for i in range(bs): |
|
gt_bbox.append(batch['bboxes'][batch_idx == i].to(batch_idx.device)) |
|
gt_class.append(batch['cls'][batch_idx == i].to(device=batch_idx.device, dtype=torch.long)) |
|
return batch |
|
|