|
|
|
|
|
import torch |
|
|
|
from ultralytics.engine.results import Results |
|
from ultralytics.models.fastsam.utils import bbox_iou |
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor |
|
from ultralytics.utils import DEFAULT_CFG, ops |
|
|
|
|
|
class FastSAMPredictor(DetectionPredictor): |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = 'segment' |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
p = ops.non_max_suppression(preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
nc=len(self.model.names), |
|
classes=self.args.classes) |
|
full_box = torch.zeros(p[0].shape[1]) |
|
full_box[2], full_box[3], full_box[4], full_box[6:] = img.shape[3], img.shape[2], 1.0, 1.0 |
|
full_box = full_box.view(1, -1) |
|
critical_iou_index = bbox_iou(full_box[0][:4], p[0][:, :4], iou_thres=0.9, image_shape=img.shape[2:]) |
|
if critical_iou_index.numel() != 0: |
|
full_box[0][4] = p[0][critical_iou_index][:, 4] |
|
full_box[0][6:] = p[0][critical_iou_index][:, 6:] |
|
p[0][critical_iou_index] = full_box |
|
results = [] |
|
is_list = isinstance(orig_imgs, list) |
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] |
|
for i, pred in enumerate(p): |
|
orig_img = orig_imgs[i] if is_list else orig_imgs |
|
img_path = self.batch[0][i] |
|
if not len(pred): |
|
masks = None |
|
elif self.args.retina_masks: |
|
if is_list: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) |
|
else: |
|
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) |
|
if is_list: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) |
|
return results |
|
|