|
|
|
|
|
import contextlib |
|
import hashlib |
|
import json |
|
import os |
|
import random |
|
import subprocess |
|
import time |
|
import zipfile |
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
from tarfile import is_tarfile |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image, ImageOps |
|
from tqdm import tqdm |
|
|
|
from ultralytics.nn.autobackend import check_class_names |
|
from ultralytics.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, ROOT, SETTINGS_YAML, clean_url, colorstr, emojis, |
|
yaml_load) |
|
from ultralytics.utils.checks import check_file, check_font, is_ascii |
|
from ultralytics.utils.downloads import download, safe_download, unzip_file |
|
from ultralytics.utils.ops import segments2boxes |
|
|
|
HELP_URL = 'See https://docs.ultralytics.com/datasets/detect for dataset formatting guidance.' |
|
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' |
|
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv', 'webm' |
|
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' |
|
|
|
|
|
def img2label_paths(img_paths): |
|
"""Define label paths as a function of image paths.""" |
|
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' |
|
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] |
|
|
|
|
|
def get_hash(paths): |
|
"""Returns a single hash value of a list of paths (files or dirs).""" |
|
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) |
|
h = hashlib.sha256(str(size).encode()) |
|
h.update(''.join(paths).encode()) |
|
return h.hexdigest() |
|
|
|
|
|
def exif_size(img: Image.Image): |
|
"""Returns exif-corrected PIL size.""" |
|
s = img.size |
|
if img.format == 'JPEG': |
|
with contextlib.suppress(Exception): |
|
exif = img.getexif() |
|
if exif: |
|
rotation = exif.get(274, None) |
|
if rotation in [6, 8]: |
|
s = s[1], s[0] |
|
return s |
|
|
|
|
|
def verify_image(args): |
|
"""Verify one image.""" |
|
(im_file, cls), prefix = args |
|
|
|
nf, nc, msg = 0, 0, '' |
|
try: |
|
im = Image.open(im_file) |
|
im.verify() |
|
shape = exif_size(im) |
|
shape = (shape[1], shape[0]) |
|
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' |
|
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' |
|
if im.format.lower() in ('jpg', 'jpeg'): |
|
with open(im_file, 'rb') as f: |
|
f.seek(-2, 2) |
|
if f.read() != b'\xff\xd9': |
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) |
|
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved' |
|
nf = 1 |
|
except Exception as e: |
|
nc = 1 |
|
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}' |
|
return (im_file, cls), nf, nc, msg |
|
|
|
|
|
def verify_image_label(args): |
|
"""Verify one image-label pair.""" |
|
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args |
|
|
|
nm, nf, ne, nc, msg, segments, keypoints, regression_vars = 0, 0, 0, 0, '', [], None, None |
|
try: |
|
|
|
im = Image.open(im_file) |
|
im.verify() |
|
shape = exif_size(im) |
|
shape = (shape[1], shape[0]) |
|
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' |
|
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' |
|
if im.format.lower() in ('jpg', 'jpeg'): |
|
with open(im_file, 'rb') as f: |
|
f.seek(-2, 2) |
|
if f.read() != b'\xff\xd9': |
|
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) |
|
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved' |
|
|
|
|
|
if os.path.isfile(lb_file): |
|
nf = 1 |
|
with open(lb_file) as f: |
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)] |
|
if any(len(x) > 6 for x in lb) and (not keypoint): |
|
classes = np.array([x[0] for x in lb], dtype=np.float32) |
|
regression_vars = np.array([x[1:7] for x in lb], dtype=np.float32) |
|
segments = [np.array(x[7:], dtype=np.float32).reshape(-1, 2) for x in lb] |
|
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) |
|
lb = np.array(lb, dtype=np.float32) |
|
nl = len(lb) |
|
if nl: |
|
if keypoint: |
|
assert lb.shape[1] == (5 + nkpt * ndim), f'labels require {(5 + nkpt * ndim)} columns each' |
|
assert (lb[:, 5::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels' |
|
assert (lb[:, 6::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels' |
|
else: |
|
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' |
|
assert (lb[:, 1:] <= 1).all(), \ |
|
f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' |
|
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' |
|
|
|
max_cls = int(lb[:, 0].max()) |
|
assert max_cls <= num_cls, \ |
|
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \ |
|
f'Possible class labels are 0-{num_cls - 1}' |
|
_, i = np.unique(lb, axis=0, return_index=True) |
|
if len(i) < nl: |
|
lb = lb[i] |
|
if segments: |
|
segments = [segments[x] for x in i] |
|
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed' |
|
else: |
|
ne = 1 |
|
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros( |
|
(0, 5), dtype=np.float32) |
|
else: |
|
nm = 1 |
|
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) |
|
if keypoint: |
|
keypoints = lb[:, 5:].reshape(-1, nkpt, ndim) |
|
if ndim == 2: |
|
kpt_mask = np.where((keypoints[..., 0] < 0) | (keypoints[..., 1] < 0), 0.0, 1.0).astype(np.float32) |
|
keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) |
|
lb = lb[:, :5] |
|
return im_file, lb, shape, segments, regression_vars, keypoints, nm, nf, ne, nc, msg |
|
except Exception as e: |
|
nc = 1 |
|
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}' |
|
return [None, None, None, None, None,None, nm, nf, ne, nc, msg] |
|
|
|
|
|
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): |
|
""" |
|
Args: |
|
imgsz (tuple): The image size. |
|
polygons (list[np.ndarray]): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). |
|
color (int): color |
|
downsample_ratio (int): downsample ratio |
|
""" |
|
mask = np.zeros(imgsz, dtype=np.uint8) |
|
polygons = np.asarray(polygons, dtype=np.int32) |
|
polygons = polygons.reshape((polygons.shape[0], -1, 2)) |
|
cv2.fillPoly(mask, polygons, color=color) |
|
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) |
|
|
|
return cv2.resize(mask, (nw, nh)) |
|
|
|
|
|
def polygons2masks(imgsz, polygons, color, downsample_ratio=1): |
|
""" |
|
Args: |
|
imgsz (tuple): The image size. |
|
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0) |
|
color (int): color |
|
downsample_ratio (int): downsample ratio |
|
""" |
|
return np.array([polygon2mask(imgsz, [x.reshape(-1)], color, downsample_ratio) for x in polygons]) |
|
|
|
|
|
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): |
|
"""Return a (640, 640) overlap mask.""" |
|
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), |
|
dtype=np.int32 if len(segments) > 255 else np.uint8) |
|
areas = [] |
|
ms = [] |
|
for si in range(len(segments)): |
|
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) |
|
ms.append(mask) |
|
areas.append(mask.sum()) |
|
areas = np.asarray(areas) |
|
index = np.argsort(-areas) |
|
ms = np.array(ms)[index] |
|
for i in range(len(segments)): |
|
mask = ms[i] * (i + 1) |
|
masks = masks + mask |
|
masks = np.clip(masks, a_min=0, a_max=i + 1) |
|
return masks, index |
|
|
|
|
|
def check_det_dataset(dataset, autodownload=True): |
|
""" |
|
Download, verify, and/or unzip a dataset if not found locally. |
|
|
|
This function checks the availability of a specified dataset, and if not found, it has the option to download and |
|
unzip the dataset. It then reads and parses the accompanying YAML data, ensuring key requirements are met and also |
|
resolves paths related to the dataset. |
|
|
|
Args: |
|
dataset (str): Path to the dataset or dataset descriptor (like a YAML file). |
|
autodownload (bool, optional): Whether to automatically download the dataset if not found. Defaults to True. |
|
|
|
Returns: |
|
(dict): Parsed dataset information and paths. |
|
""" |
|
|
|
data = check_file(dataset) |
|
|
|
|
|
extract_dir = '' |
|
if isinstance(data, (str, Path)) and (zipfile.is_zipfile(data) or is_tarfile(data)): |
|
new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False) |
|
data = next((DATASETS_DIR / new_dir).rglob('*.yaml')) |
|
extract_dir, autodownload = data.parent, False |
|
|
|
|
|
if isinstance(data, (str, Path)): |
|
data = yaml_load(data, append_filename=True) |
|
|
|
|
|
for k in 'train', 'val': |
|
if k not in data: |
|
if k == 'val' and 'validation' in data: |
|
LOGGER.info("WARNING ⚠️ renaming data YAML 'validation' key to 'val' to match YOLO format.") |
|
data['val'] = data.pop('validation') |
|
else: |
|
raise SyntaxError( |
|
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs.")) |
|
if 'names' not in data and 'nc' not in data: |
|
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs.")) |
|
if 'names' in data and 'nc' in data and len(data['names']) != data['nc']: |
|
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) |
|
if 'names' not in data: |
|
data['names'] = [f'class_{i}' for i in range(data['nc'])] |
|
else: |
|
data['nc'] = len(data['names']) |
|
|
|
data['names'] = check_class_names(data['names']) |
|
|
|
|
|
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) |
|
|
|
if not path.is_absolute(): |
|
path = (DATASETS_DIR / path).resolve() |
|
data['path'] = path |
|
for k in 'train', 'val', 'test': |
|
if data.get(k): |
|
if isinstance(data[k], str): |
|
x = (path / data[k]).resolve() |
|
if not x.exists() and data[k].startswith('../'): |
|
x = (path / data[k][3:]).resolve() |
|
data[k] = str(x) |
|
else: |
|
data[k] = [str((path / x).resolve()) for x in data[k]] |
|
|
|
|
|
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) |
|
if val: |
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] |
|
if not all(x.exists() for x in val): |
|
name = clean_url(dataset) |
|
m = f"\nDataset '{name}' images not found ⚠️, missing path '{[x for x in val if not x.exists()][0]}'" |
|
if s and autodownload: |
|
LOGGER.warning(m) |
|
else: |
|
m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'" |
|
raise FileNotFoundError(m) |
|
t = time.time() |
|
r = None |
|
if s.startswith('http') and s.endswith('.zip'): |
|
safe_download(url=s, dir=DATASETS_DIR, delete=True) |
|
elif s.startswith('bash '): |
|
LOGGER.info(f'Running {s} ...') |
|
r = os.system(s) |
|
else: |
|
exec(s, {'yaml': data}) |
|
dt = f'({round(time.time() - t, 1)}s)' |
|
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌' |
|
LOGGER.info(f'Dataset download {s}\n') |
|
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') |
|
|
|
return data |
|
|
|
|
|
def check_cls_dataset(dataset, split=''): |
|
""" |
|
Checks a classification dataset such as Imagenet. |
|
|
|
This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information. |
|
If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally. |
|
|
|
Args: |
|
dataset (str | Path): The name of the dataset. |
|
split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''. |
|
|
|
Returns: |
|
(dict): A dictionary containing the following keys: |
|
- 'train' (Path): The directory path containing the training set of the dataset. |
|
- 'val' (Path): The directory path containing the validation set of the dataset. |
|
- 'test' (Path): The directory path containing the test set of the dataset. |
|
- 'nc' (int): The number of classes in the dataset. |
|
- 'names' (dict): A dictionary of class names in the dataset. |
|
""" |
|
|
|
dataset = Path(dataset) |
|
data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve() |
|
if not data_dir.is_dir(): |
|
LOGGER.warning(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') |
|
t = time.time() |
|
if str(dataset) == 'imagenet': |
|
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) |
|
else: |
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip' |
|
download(url, dir=data_dir.parent) |
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" |
|
LOGGER.info(s) |
|
train_set = data_dir / 'train' |
|
val_set = data_dir / 'val' if (data_dir / 'val').exists() else data_dir / 'validation' if ( |
|
data_dir / 'validation').exists() else None |
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else None |
|
if split == 'val' and not val_set: |
|
LOGGER.warning("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.") |
|
elif split == 'test' and not test_set: |
|
LOGGER.warning("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.") |
|
|
|
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) |
|
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] |
|
names = dict(enumerate(sorted(names))) |
|
|
|
|
|
for k, v in {'train': train_set, 'val': val_set, 'test': test_set}.items(): |
|
prefix = f'{colorstr(f"{k}:")} {v}...' |
|
if v is None: |
|
LOGGER.info(prefix) |
|
else: |
|
files = [path for path in v.rglob('*.*') if path.suffix[1:].lower() in IMG_FORMATS] |
|
nf = len(files) |
|
nd = len({file.parent for file in files}) |
|
if nf == 0: |
|
if k == 'train': |
|
raise FileNotFoundError(emojis(f"{dataset} '{k}:' no training images found ❌ ")) |
|
else: |
|
LOGGER.warning(f'{prefix} found {nf} images in {nd} classes: WARNING ⚠️ no images found') |
|
elif nd != nc: |
|
LOGGER.warning(f'{prefix} found {nf} images in {nd} classes: ERROR ❌️ requires {nc} classes, not {nd}') |
|
else: |
|
LOGGER.info(f'{prefix} found {nf} images in {nd} classes ✅ ') |
|
|
|
return {'train': train_set, 'val': val_set, 'test': test_set, 'nc': nc, 'names': names} |
|
|
|
|
|
class HUBDatasetStats: |
|
""" |
|
A class for generating HUB dataset JSON and `-hub` dataset directory. |
|
|
|
Args: |
|
path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). Default is 'coco128.yaml'. |
|
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'. |
|
autodownload (bool): Attempt to download dataset if not found locally. Default is False. |
|
|
|
Example: |
|
Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets |
|
i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip. |
|
```python |
|
from ultralytics.data.utils import HUBDatasetStats |
|
|
|
stats = HUBDatasetStats('path/to/coco8.zip', task='detect') # detect dataset |
|
stats = HUBDatasetStats('path/to/coco8-seg.zip', task='segment') # segment dataset |
|
stats = HUBDatasetStats('path/to/coco8-pose.zip', task='pose') # pose dataset |
|
stats = HUBDatasetStats('path/to/imagenet10.zip', task='classify') # classification dataset |
|
|
|
stats.get_json(save=True) |
|
stats.process_images() |
|
``` |
|
""" |
|
|
|
def __init__(self, path='coco128.yaml', task='detect', autodownload=False): |
|
"""Initialize class.""" |
|
path = Path(path).resolve() |
|
LOGGER.info(f'Starting HUB dataset checks for {path}....') |
|
|
|
self.task = task |
|
if self.task == 'classify': |
|
unzip_dir = unzip_file(path) |
|
data = check_cls_dataset(unzip_dir) |
|
data['path'] = unzip_dir |
|
else: |
|
zipped, data_dir, yaml_path = self._unzip(Path(path)) |
|
try: |
|
|
|
data = check_det_dataset(yaml_path, autodownload) |
|
if zipped: |
|
data['path'] = data_dir |
|
except Exception as e: |
|
raise Exception('error/HUB/dataset_stats/init') from e |
|
|
|
self.hub_dir = Path(f'{data["path"]}-hub') |
|
self.im_dir = self.hub_dir / 'images' |
|
self.im_dir.mkdir(parents=True, exist_ok=True) |
|
self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} |
|
self.data = data |
|
|
|
@staticmethod |
|
def _find_yaml(dir): |
|
"""Return data.yaml file.""" |
|
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) |
|
assert files, f"No *.yaml file found in '{dir.resolve()}'" |
|
if len(files) > 1: |
|
files = [f for f in files if f.stem == dir.stem] |
|
assert len(files) == 1, f"Expected 1 *.yaml file in '{dir.resolve()}', but found {len(files)}.\n{files}" |
|
return files[0] |
|
|
|
def _unzip(self, path): |
|
"""Unzip data.zip.""" |
|
if not str(path).endswith('.zip'): |
|
return False, None, path |
|
unzip_dir = unzip_file(path, path=path.parent) |
|
assert unzip_dir.is_dir(), f'Error unzipping {path}, {unzip_dir} not found. ' \ |
|
f'path/to/abc.zip MUST unzip to path/to/abc/' |
|
return True, str(unzip_dir), self._find_yaml(unzip_dir) |
|
|
|
def _hub_ops(self, f): |
|
"""Saves a compressed image for HUB previews.""" |
|
compress_one_image(f, self.im_dir / Path(f).name) |
|
|
|
def get_json(self, save=False, verbose=False): |
|
"""Return dataset JSON for Ultralytics HUB.""" |
|
|
|
def _round(labels): |
|
"""Update labels to integer class and 4 decimal place floats.""" |
|
if self.task == 'detect': |
|
coordinates = labels['bboxes'] |
|
elif self.task == 'segment': |
|
coordinates = [x.flatten() for x in labels['segments']] |
|
elif self.task == 'pose': |
|
n = labels['keypoints'].shape[0] |
|
coordinates = np.concatenate((labels['bboxes'], labels['keypoints'].reshape(n, -1)), 1) |
|
else: |
|
raise ValueError('Undefined dataset task.') |
|
zipped = zip(labels['cls'], coordinates) |
|
return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped] |
|
|
|
for split in 'train', 'val', 'test': |
|
self.stats[split] = None |
|
path = self.data.get(split) |
|
|
|
|
|
if path is None: |
|
continue |
|
files = [f for f in Path(path).rglob('*.*') if f.suffix[1:].lower() in IMG_FORMATS] |
|
if not files: |
|
continue |
|
|
|
|
|
if self.task == 'classify': |
|
from torchvision.datasets import ImageFolder |
|
|
|
dataset = ImageFolder(self.data[split]) |
|
|
|
x = np.zeros(len(dataset.classes)).astype(int) |
|
for im in dataset.imgs: |
|
x[im[1]] += 1 |
|
|
|
self.stats[split] = { |
|
'instance_stats': { |
|
'total': len(dataset), |
|
'per_class': x.tolist()}, |
|
'image_stats': { |
|
'total': len(dataset), |
|
'unlabelled': 0, |
|
'per_class': x.tolist()}, |
|
'labels': [{ |
|
Path(k).name: v} for k, v in dataset.imgs]} |
|
else: |
|
from ultralytics.data import YOLODataset |
|
|
|
dataset = YOLODataset(img_path=self.data[split], |
|
data=self.data, |
|
use_segments=self.task == 'segment', |
|
use_keypoints=self.task == 'pose') |
|
x = np.array([ |
|
np.bincount(label['cls'].astype(int).flatten(), minlength=self.data['nc']) |
|
for label in tqdm(dataset.labels, total=len(dataset), desc='Statistics')]) |
|
self.stats[split] = { |
|
'instance_stats': { |
|
'total': int(x.sum()), |
|
'per_class': x.sum(0).tolist()}, |
|
'image_stats': { |
|
'total': len(dataset), |
|
'unlabelled': int(np.all(x == 0, 1).sum()), |
|
'per_class': (x > 0).sum(0).tolist()}, |
|
'labels': [{ |
|
Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)]} |
|
|
|
|
|
if save: |
|
stats_path = self.hub_dir / 'stats.json' |
|
LOGGER.info(f'Saving {stats_path.resolve()}...') |
|
with open(stats_path, 'w') as f: |
|
json.dump(self.stats, f) |
|
if verbose: |
|
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False)) |
|
return self.stats |
|
|
|
def process_images(self): |
|
"""Compress images for Ultralytics HUB.""" |
|
from ultralytics.data import YOLODataset |
|
|
|
for split in 'train', 'val', 'test': |
|
if self.data.get(split) is None: |
|
continue |
|
dataset = YOLODataset(img_path=self.data[split], data=self.data) |
|
with ThreadPool(NUM_THREADS) as pool: |
|
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f'{split} images'): |
|
pass |
|
LOGGER.info(f'Done. All images saved to {self.im_dir}') |
|
return self.im_dir |
|
|
|
|
|
def compress_one_image(f, f_new=None, max_dim=1920, quality=50): |
|
""" |
|
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the |
|
Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will |
|
not be resized. |
|
|
|
Args: |
|
f (str): The path to the input image file. |
|
f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten. |
|
max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels. |
|
quality (int, optional): The image compression quality as a percentage. Default is 50%. |
|
|
|
Example: |
|
```python |
|
from pathlib import Path |
|
from ultralytics.data.utils import compress_one_image |
|
|
|
for f in Path('path/to/dataset').rglob('*.jpg'): |
|
compress_one_image(f) |
|
``` |
|
""" |
|
|
|
try: |
|
im = Image.open(f) |
|
r = max_dim / max(im.height, im.width) |
|
if r < 1.0: |
|
im = im.resize((int(im.width * r), int(im.height * r))) |
|
im.save(f_new or f, 'JPEG', quality=quality, optimize=True) |
|
except Exception as e: |
|
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}') |
|
im = cv2.imread(f) |
|
im_height, im_width = im.shape[:2] |
|
r = max_dim / max(im_height, im_width) |
|
if r < 1.0: |
|
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) |
|
cv2.imwrite(str(f_new or f), im) |
|
|
|
|
|
def autosplit(path=DATASETS_DIR / 'coco8/images', weights=(0.9, 0.1, 0.0), annotated_only=False): |
|
""" |
|
Automatically split a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files. |
|
|
|
Args: |
|
path (Path, optional): Path to images directory. Defaults to DATASETS_DIR / 'coco8/images'. |
|
weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0). |
|
annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False. |
|
|
|
Example: |
|
```python |
|
from ultralytics.data.utils import autosplit |
|
|
|
autosplit() |
|
``` |
|
""" |
|
|
|
path = Path(path) |
|
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) |
|
n = len(files) |
|
random.seed(0) |
|
indices = random.choices([0, 1, 2], weights=weights, k=n) |
|
|
|
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] |
|
for x in txt: |
|
if (path.parent / x).exists(): |
|
(path.parent / x).unlink() |
|
|
|
LOGGER.info(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) |
|
for i, img in tqdm(zip(indices, files), total=n): |
|
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): |
|
with open(path.parent / txt[i], 'a') as f: |
|
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') |
|
|