tomrb's picture
initial yolov8to
ab854b9
raw
history blame
17 kB
# Ultralytics YOLO 🚀, AGPL-3.0 license
import glob
import math
import os
import time
from dataclasses import dataclass
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops
from ultralytics.utils.checks import check_requirements
@dataclass
class SourceTypes:
webcam: bool = False
screenshot: bool = False
from_img: bool = False
tensor: bool = False
class LoadStreams:
"""YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`."""
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1, stream_buffer=False):
"""Initialize instance variables and check for consistent input stream shapes."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.stream_buffer = stream_buffer # buffer input streams
self.running = True # running flag for Thread
self.mode = 'stream'
self.imgsz = imgsz
self.vid_stride = vid_stride # video frame-rate stride
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
n = len(sources)
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later
self.imgs, self.fps, self.frames, self.threads, self.shape = [[]] * n, [0] * n, [0] * n, [None] * n, [None] * n
self.caps = [None] * n # video capture objects
for i, s in enumerate(sources): # index, source
# Start thread to read frames from video stream
st = f'{i + 1}/{n}: {s}... '
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
s = get_best_youtube_url(s)
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
if s == 0 and (is_colab() or is_kaggle()):
raise NotImplementedError("'source=0' webcam not supported in Colab and Kaggle notebooks. "
"Try running 'source=0' in a local environment.")
self.caps[i] = cv2.VideoCapture(s) # store video capture object
if not self.caps[i].isOpened():
raise ConnectionError(f'{st}Failed to open {s}')
w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = self.caps[i].get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
'inf') # infinite stream fallback
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
success, im = self.caps[i].read() # guarantee first frame
if not success or im is None:
raise ConnectionError(f'{st}Failed to read images from {s}')
self.imgs[i].append(im)
self.shape[i] = im.shape
self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
LOGGER.info(f'{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)')
self.threads[i].start()
LOGGER.info('') # newline
# Check for common shapes
self.bs = self.__len__()
def update(self, i, cap, stream):
"""Read stream `i` frames in daemon thread."""
n, f = 0, self.frames[i] # frame number, frame array
while self.running and cap.isOpened() and n < (f - 1):
# Only read a new frame if the buffer is empty
if not self.imgs[i] or not self.stream_buffer:
n += 1
cap.grab() # .read() = .grab() followed by .retrieve()
if n % self.vid_stride == 0:
success, im = cap.retrieve()
if not success:
im = np.zeros(self.shape[i], dtype=np.uint8)
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
cap.open(stream) # re-open stream if signal was lost
self.imgs[i].append(im) # add image to buffer
else:
time.sleep(0.01) # wait until the buffer is empty
def close(self):
"""Close stream loader and release resources."""
self.running = False # stop flag for Thread
for thread in self.threads:
if thread.is_alive():
thread.join(timeout=5) # Add timeout
for cap in self.caps: # Iterate through the stored VideoCapture objects
try:
cap.release() # release video capture
except Exception as e:
LOGGER.warning(f'WARNING ⚠️ Could not release VideoCapture object: {e}')
cv2.destroyAllWindows()
def __iter__(self):
"""Iterates through YOLO image feed and re-opens unresponsive streams."""
self.count = -1
return self
def __next__(self):
"""Returns source paths, transformed and original images for processing."""
self.count += 1
# Wait until a frame is available in each buffer
while not all(self.imgs):
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
self.close()
raise StopIteration
time.sleep(1 / min(self.fps))
# Get and remove the next frame from imgs buffer
if self.stream_buffer:
images = [x.pop(0) for x in self.imgs]
else:
# Get the latest frame, and clear the rest from the imgs buffer
images = []
for x in self.imgs:
images.append(x.pop(-1) if x else None)
x.clear()
return self.sources, images, None, ''
def __len__(self):
"""Return the length of the sources object."""
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
class LoadScreenshots:
"""YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`."""
def __init__(self, source, imgsz=640):
"""source = [screen_number left top width height] (pixels)."""
check_requirements('mss')
import mss # noqa
source, *params = source.split()
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
if len(params) == 1:
self.screen = int(params[0])
elif len(params) == 4:
left, top, width, height = (int(x) for x in params)
elif len(params) == 5:
self.screen, left, top, width, height = (int(x) for x in params)
self.imgsz = imgsz
self.mode = 'stream'
self.frame = 0
self.sct = mss.mss()
self.bs = 1
# Parse monitor shape
monitor = self.sct.monitors[self.screen]
self.top = monitor['top'] if top is None else (monitor['top'] + top)
self.left = monitor['left'] if left is None else (monitor['left'] + left)
self.width = width or monitor['width']
self.height = height or monitor['height']
self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height}
def __iter__(self):
"""Returns an iterator of the object."""
return self
def __next__(self):
"""mss screen capture: get raw pixels from the screen as np array."""
im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3] # BGRA to BGR
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: '
self.frame += 1
return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string
class LoadImages:
"""YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`."""
def __init__(self, path, imgsz=640, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
parent = None
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
parent = Path(path).parent
path = Path(path).read_text().splitlines() # list of sources
files = []
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
if '*' in a:
files.extend(sorted(glob.glob(a, recursive=True))) # glob
elif os.path.isdir(a):
files.extend(sorted(glob.glob(os.path.join(a, '*.*')))) # dir
elif os.path.isfile(a):
files.append(a) # files (absolute or relative to CWD)
elif parent and (parent / p).is_file():
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent)
else:
raise FileNotFoundError(f'{p} does not exist')
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
ni, nv = len(images), len(videos)
self.imgsz = imgsz
self.files = images + videos
self.nf = ni + nv # number of files
self.video_flag = [False] * ni + [True] * nv
self.mode = 'image'
self.vid_stride = vid_stride # video frame-rate stride
self.bs = 1
if any(videos):
self._new_video(videos[0]) # new video
else:
self.cap = None
if self.nf == 0:
raise FileNotFoundError(f'No images or videos found in {p}. '
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}')
def __iter__(self):
"""Returns an iterator object for VideoStream or ImageFolder."""
self.count = 0
return self
def __next__(self):
"""Return next image, path and metadata from dataset."""
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
if self.video_flag[self.count]:
# Read video
self.mode = 'video'
for _ in range(self.vid_stride):
self.cap.grab()
success, im0 = self.cap.retrieve()
while not success:
self.count += 1
self.cap.release()
if self.count == self.nf: # last video
raise StopIteration
path = self.files[self.count]
self._new_video(path)
success, im0 = self.cap.read()
self.frame += 1
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
else:
# Read image
self.count += 1
im0 = cv2.imread(path) # BGR
if im0 is None:
raise FileNotFoundError(f'Image Not Found {path}')
s = f'image {self.count}/{self.nf} {path}: '
return [path], [im0], self.cap, s
def _new_video(self, path):
"""Create a new video capture object."""
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def __len__(self):
"""Returns the number of files in the object."""
return self.nf # number of files
class LoadPilAndNumpy:
def __init__(self, im0, imgsz=640):
"""Initialize PIL and Numpy Dataloader."""
if not isinstance(im0, list):
im0 = [im0]
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
self.im0 = [self._single_check(im) for im in im0]
self.imgsz = imgsz
self.mode = 'image'
# Generate fake paths
self.bs = len(self.im0)
@staticmethod
def _single_check(im):
"""Validate and format an image to numpy array."""
assert isinstance(im, (Image.Image, np.ndarray)), f'Expected PIL/np.ndarray image type, but got {type(im)}'
if isinstance(im, Image.Image):
if im.mode != 'RGB':
im = im.convert('RGB')
im = np.asarray(im)[:, :, ::-1]
im = np.ascontiguousarray(im) # contiguous
return im
def __len__(self):
"""Returns the length of the 'im0' attribute."""
return len(self.im0)
def __next__(self):
"""Returns batch paths, images, processed images, None, ''."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ''
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
self.count = 0
return self
class LoadTensor:
def __init__(self, im0) -> None:
self.im0 = self._single_check(im0)
self.bs = self.im0.shape[0]
self.mode = 'image'
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
@staticmethod
def _single_check(im, stride=32):
"""Validate and format an image to torch.Tensor."""
s = f'WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) ' \
f'divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible.'
if len(im.shape) != 4:
if len(im.shape) != 3:
raise ValueError(s)
LOGGER.warning(s)
im = im.unsqueeze(0)
if im.shape[2] % stride or im.shape[3] % stride:
raise ValueError(s)
if im.max() > 1.0:
LOGGER.warning(f'WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. '
f'Dividing input by 255.')
im = im.float() / 255.0
return im
def __iter__(self):
"""Returns an iterator object."""
self.count = 0
return self
def __next__(self):
"""Return next item in the iterator."""
if self.count == 1:
raise StopIteration
self.count += 1
return self.paths, self.im0, None, ''
def __len__(self):
"""Returns the batch size."""
return self.bs
def autocast_list(source):
"""
Merges a list of source of different types into a list of numpy arrays or PIL images
"""
files = []
for im in source:
if isinstance(im, (str, Path)): # filename or uri
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im))
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image
files.append(im)
else:
raise TypeError(f'type {type(im).__name__} is not a supported Ultralytics prediction source type. \n'
f'See https://docs.ultralytics.com/modes/predict for supported source types.')
return files
LOADERS = LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots # tuple
def get_best_youtube_url(url, use_pafy=False):
"""
Retrieves the URL of the best quality MP4 video stream from a given YouTube video.
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream.
Args:
url (str): The URL of the YouTube video.
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package.
Returns:
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
"""
if use_pafy:
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
import pafy # noqa
return pafy.new(url).getbestvideo(preftype='mp4').url
else:
check_requirements('yt-dlp')
import yt_dlp
with yt_dlp.YoutubeDL({'quiet': True}) as ydl:
info_dict = ydl.extract_info(url, download=False) # extract info
for f in reversed(info_dict.get('formats', [])): # reversed because best is usually last
# Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
good_size = (f.get('width') or 0) >= 1920 or (f.get('height') or 0) >= 1080
if good_size and f['vcodec'] != 'none' and f['acodec'] == 'none' and f['ext'] == 'mp4':
return f.get('url')