|
|
|
|
|
import json |
|
import shutil |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
from tqdm import tqdm |
|
|
|
|
|
def coco91_to_coco80_class(): |
|
"""Converts 91-index COCO class IDs to 80-index COCO class IDs. |
|
|
|
Returns: |
|
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the |
|
corresponding 91-index class ID. |
|
""" |
|
return [ |
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, |
|
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, |
|
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, |
|
None, 73, 74, 75, 76, 77, 78, 79, None] |
|
|
|
|
|
def coco80_to_coco91_class(): |
|
""" |
|
Converts 80-index (val2014) to 91-index (paper). |
|
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. |
|
|
|
Example: |
|
```python |
|
import numpy as np |
|
|
|
a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') |
|
b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') |
|
x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco |
|
x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet |
|
``` |
|
""" |
|
return [ |
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, |
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] |
|
|
|
|
|
def convert_coco(labels_dir='../coco/annotations/', use_segments=False, use_keypoints=False, cls91to80=True): |
|
"""Converts COCO dataset annotations to a format suitable for training YOLOv5 models. |
|
|
|
Args: |
|
labels_dir (str, optional): Path to directory containing COCO dataset annotation files. |
|
use_segments (bool, optional): Whether to include segmentation masks in the output. |
|
use_keypoints (bool, optional): Whether to include keypoint annotations in the output. |
|
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. |
|
|
|
Example: |
|
```python |
|
from ultralytics.data.converter import convert_coco |
|
|
|
convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True) |
|
``` |
|
|
|
Output: |
|
Generates output files in the specified output directory. |
|
""" |
|
|
|
|
|
save_dir = Path('yolo_labels') |
|
if save_dir.exists(): |
|
shutil.rmtree(save_dir) |
|
for p in save_dir / 'labels', save_dir / 'images': |
|
p.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
coco80 = coco91_to_coco80_class() |
|
|
|
|
|
for json_file in sorted(Path(labels_dir).resolve().glob('*.json')): |
|
fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') |
|
fn.mkdir(parents=True, exist_ok=True) |
|
with open(json_file) as f: |
|
data = json.load(f) |
|
|
|
|
|
images = {f'{x["id"]:d}': x for x in data['images']} |
|
|
|
imgToAnns = defaultdict(list) |
|
for ann in data['annotations']: |
|
imgToAnns[ann['image_id']].append(ann) |
|
|
|
|
|
for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'): |
|
img = images[f'{img_id:d}'] |
|
h, w, f = img['height'], img['width'], img['file_name'] |
|
|
|
bboxes = [] |
|
segments = [] |
|
keypoints = [] |
|
for ann in anns: |
|
if ann['iscrowd']: |
|
continue |
|
|
|
box = np.array(ann['bbox'], dtype=np.float64) |
|
box[:2] += box[2:] / 2 |
|
box[[0, 2]] /= w |
|
box[[1, 3]] /= h |
|
if box[2] <= 0 or box[3] <= 0: |
|
continue |
|
|
|
cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 |
|
box = [cls] + box.tolist() |
|
if box not in bboxes: |
|
bboxes.append(box) |
|
if use_segments and ann.get('segmentation') is not None: |
|
if len(ann['segmentation']) == 0: |
|
segments.append([]) |
|
continue |
|
elif len(ann['segmentation']) > 1: |
|
s = merge_multi_segment(ann['segmentation']) |
|
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() |
|
else: |
|
s = [j for i in ann['segmentation'] for j in i] |
|
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() |
|
s = [cls] + s |
|
if s not in segments: |
|
segments.append(s) |
|
if use_keypoints and ann.get('keypoints') is not None: |
|
keypoints.append(box + (np.array(ann['keypoints']).reshape(-1, 3) / |
|
np.array([w, h, 1])).reshape(-1).tolist()) |
|
|
|
|
|
with open((fn / f).with_suffix('.txt'), 'a') as file: |
|
for i in range(len(bboxes)): |
|
if use_keypoints: |
|
line = *(keypoints[i]), |
|
else: |
|
line = *(segments[i] |
|
if use_segments and len(segments[i]) > 0 else bboxes[i]), |
|
file.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
|
|
|
def convert_dota_to_yolo_obb(dota_root_path: str): |
|
""" |
|
Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format. |
|
|
|
The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the |
|
associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory. |
|
|
|
Args: |
|
dota_root_path (str): The root directory path of the DOTA dataset. |
|
|
|
Example: |
|
```python |
|
from ultralytics.data.converter import convert_dota_to_yolo_obb |
|
|
|
convert_dota_to_yolo_obb('path/to/DOTA') |
|
``` |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
- DOTA |
|
- images |
|
- train |
|
- val |
|
- labels |
|
- train_original |
|
- val_original |
|
|
|
After the function execution, the new labels will be saved in: |
|
- DOTA |
|
- labels |
|
- train |
|
- val |
|
""" |
|
dota_root_path = Path(dota_root_path) |
|
|
|
|
|
class_mapping = { |
|
'plane': 0, |
|
'ship': 1, |
|
'storage-tank': 2, |
|
'baseball-diamond': 3, |
|
'tennis-court': 4, |
|
'basketball-court': 5, |
|
'ground-track-field': 6, |
|
'harbor': 7, |
|
'bridge': 8, |
|
'large-vehicle': 9, |
|
'small-vehicle': 10, |
|
'helicopter': 11, |
|
'roundabout': 12, |
|
'soccer ball-field': 13, |
|
'swimming-pool': 14, |
|
'container-crane': 15, |
|
'airport': 16, |
|
'helipad': 17} |
|
|
|
def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir): |
|
orig_label_path = orig_label_dir / f'{image_name}.txt' |
|
save_path = save_dir / f'{image_name}.txt' |
|
|
|
with orig_label_path.open('r') as f, save_path.open('w') as g: |
|
lines = f.readlines() |
|
for line in lines: |
|
parts = line.strip().split() |
|
if len(parts) < 9: |
|
continue |
|
class_name = parts[8] |
|
class_idx = class_mapping[class_name] |
|
coords = [float(p) for p in parts[:8]] |
|
normalized_coords = [ |
|
coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)] |
|
formatted_coords = ['{:.6g}'.format(coord) for coord in normalized_coords] |
|
g.write(f"{class_idx} {' '.join(formatted_coords)}\n") |
|
|
|
for phase in ['train', 'val']: |
|
image_dir = dota_root_path / 'images' / phase |
|
orig_label_dir = dota_root_path / 'labels' / f'{phase}_original' |
|
save_dir = dota_root_path / 'labels' / phase |
|
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
image_paths = list(image_dir.iterdir()) |
|
for image_path in tqdm(image_paths, desc=f'Processing {phase} images'): |
|
if image_path.suffix != '.png': |
|
continue |
|
image_name_without_ext = image_path.stem |
|
img = cv2.imread(str(image_path)) |
|
h, w = img.shape[:2] |
|
convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir) |
|
|
|
|
|
def min_index(arr1, arr2): |
|
""" |
|
Find a pair of indexes with the shortest distance between two arrays of 2D points. |
|
|
|
Args: |
|
arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points. |
|
arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points. |
|
|
|
Returns: |
|
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. |
|
""" |
|
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) |
|
return np.unravel_index(np.argmin(dis, axis=None), dis.shape) |
|
|
|
|
|
def merge_multi_segment(segments): |
|
""" |
|
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. |
|
This function connects these coordinates with a thin line to merge all segments into one. |
|
|
|
Args: |
|
segments (List[List]): Original segmentations in COCO's JSON file. |
|
Each element is a list of coordinates, like [segmentation1, segmentation2,...]. |
|
|
|
Returns: |
|
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. |
|
""" |
|
s = [] |
|
segments = [np.array(i).reshape(-1, 2) for i in segments] |
|
idx_list = [[] for _ in range(len(segments))] |
|
|
|
|
|
for i in range(1, len(segments)): |
|
idx1, idx2 = min_index(segments[i - 1], segments[i]) |
|
idx_list[i - 1].append(idx1) |
|
idx_list[i].append(idx2) |
|
|
|
|
|
for k in range(2): |
|
|
|
if k == 0: |
|
for i, idx in enumerate(idx_list): |
|
|
|
|
|
if len(idx) == 2 and idx[0] > idx[1]: |
|
idx = idx[::-1] |
|
segments[i] = segments[i][::-1, :] |
|
|
|
segments[i] = np.roll(segments[i], -idx[0], axis=0) |
|
segments[i] = np.concatenate([segments[i], segments[i][:1]]) |
|
|
|
if i in [0, len(idx_list) - 1]: |
|
s.append(segments[i]) |
|
else: |
|
idx = [0, idx[1] - idx[0]] |
|
s.append(segments[i][idx[0]:idx[1] + 1]) |
|
|
|
else: |
|
for i in range(len(idx_list) - 1, -1, -1): |
|
if i not in [0, len(idx_list) - 1]: |
|
idx = idx_list[i] |
|
nidx = abs(idx[1] - idx[0]) |
|
s.append(segments[i][nidx:]) |
|
return s |
|
|