|
|
|
|
|
import subprocess |
|
from pathlib import Path |
|
|
|
import pytest |
|
|
|
from ultralytics.utils import ASSETS, SETTINGS |
|
|
|
WEIGHTS_DIR = Path(SETTINGS['weights_dir']) |
|
TASK_ARGS = [ |
|
('detect', 'yolov8n', 'coco8.yaml'), |
|
('segment', 'yolov8n-seg', 'coco8-seg.yaml'), |
|
('classify', 'yolov8n-cls', 'imagenet10'), |
|
('pose', 'yolov8n-pose', 'coco8-pose.yaml'), ] |
|
EXPORT_ARGS = [ |
|
('yolov8n', 'torchscript'), |
|
('yolov8n-seg', 'torchscript'), |
|
('yolov8n-cls', 'torchscript'), |
|
('yolov8n-pose', 'torchscript'), ] |
|
|
|
|
|
def run(cmd): |
|
|
|
subprocess.run(cmd.split(), check=True) |
|
|
|
|
|
def test_special_modes(): |
|
run('yolo help') |
|
run('yolo checks') |
|
run('yolo version') |
|
run('yolo settings reset') |
|
run('yolo cfg') |
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_train(task, model, data): |
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk') |
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_val(task, model, data): |
|
run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json') |
|
|
|
|
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_predict(task, model, data): |
|
run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt') |
|
|
|
|
|
@pytest.mark.parametrize('model,format', EXPORT_ARGS) |
|
def test_export(model, format): |
|
run(f'yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32') |
|
|
|
|
|
def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'): |
|
|
|
run(f'yolo train {task} model={model} data={data} --imgsz= 640 epochs =1, cache = disk') |
|
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt") |
|
|
|
|
|
def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'): |
|
source = ASSETS / 'bus.jpg' |
|
|
|
run(f'yolo segment val {task} model={model} data={data} imgsz=32') |
|
run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt') |
|
|
|
from ultralytics import FastSAM |
|
from ultralytics.models.fastsam import FastSAMPrompt |
|
from ultralytics.models.sam import Predictor |
|
|
|
|
|
sam_model = FastSAM(model) |
|
|
|
|
|
everything_results = sam_model(source, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) |
|
|
|
|
|
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20) |
|
|
|
|
|
prompt_process = FastSAMPrompt(source, everything_results, device='cpu') |
|
ann = prompt_process.everything_prompt() |
|
|
|
|
|
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300]) |
|
|
|
|
|
ann = prompt_process.text_prompt(text='a photo of a dog') |
|
|
|
|
|
|
|
|
|
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1]) |
|
prompt_process.plot(annotations=ann, output='./') |
|
|
|
|
|
def test_mobilesam(): |
|
from ultralytics import SAM |
|
|
|
|
|
model = SAM(WEIGHTS_DIR / 'mobile_sam.pt') |
|
|
|
|
|
source = ASSETS / 'zidane.jpg' |
|
|
|
|
|
model.predict(source, points=[900, 370], labels=[1]) |
|
|
|
|
|
model.predict(source, bboxes=[439, 437, 524, 709]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize('task,model,data', TASK_ARGS) |
|
def test_train_gpu(task, model, data): |
|
run(f'yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device="0"') |
|
run(f'yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device="0,1"') |
|
|