File size: 23,065 Bytes
ab854b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license

import math
import os
import platform
import random
import time
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
from typing import Union

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, __version__
from ultralytics.utils.checks import check_version

try:
    import thop
except ImportError:
    thop = None

TORCH_1_9 = check_version(torch.__version__, '1.9.0')
TORCH_2_0 = check_version(torch.__version__, '2.0.0')


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """Decorator to make all processes in distributed training wait for each local_master to do something."""
    initialized = torch.distributed.is_available() and torch.distributed.is_initialized()
    if initialized and local_rank not in (-1, 0):
        dist.barrier(device_ids=[local_rank])
    yield
    if initialized and local_rank == 0:
        dist.barrier(device_ids=[0])


def smart_inference_mode():
    """Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator."""

    def decorate(fn):
        """Applies appropriate torch decorator for inference mode based on torch version."""
        return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn)

    return decorate


def get_cpu_info():
    """Return a string with system CPU information, i.e. 'Apple M2'."""
    import cpuinfo  # pip install py-cpuinfo

    k = 'brand_raw', 'hardware_raw', 'arch_string_raw'  # info keys sorted by preference (not all keys always available)
    info = cpuinfo.get_cpu_info()  # info dict
    string = info.get(k[0] if k[0] in info else k[1] if k[1] in info else k[2], 'unknown')
    return string.replace('(R)', '').replace('CPU ', '').replace('@ ', '')


def select_device(device='', batch=0, newline=False, verbose=True):
    """Selects PyTorch Device. Options are device = None or 'cpu' or 0 or '0' or '0,1,2,3'."""
    s = f'Ultralytics YOLOv{__version__} ๐Ÿš€ Python-{platform.python_version()} torch-{torch.__version__} '
    device = str(device).lower()
    for remove in 'cuda:', 'none', '(', ')', '[', ']', "'", ' ':
        device = device.replace(remove, '')  # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1'
    cpu = device == 'cpu'
    mps = device == 'mps'  # Apple Metal Performance Shaders (MPS)
    if cpu or mps:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
    elif device:  # non-cpu device requested
        if device == 'cuda':
            device = '0'
        visible = os.environ.get('CUDA_VISIBLE_DEVICES', None)
        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable - must be before assert is_available()
        if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', ''))):
            LOGGER.info(s)
            install = 'See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no ' \
                      'CUDA devices are seen by torch.\n' if torch.cuda.device_count() == 0 else ''
            raise ValueError(f"Invalid CUDA 'device={device}' requested."
                             f" Use 'device=cpu' or pass valid CUDA device(s) if available,"
                             f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n"
                             f'\ntorch.cuda.is_available(): {torch.cuda.is_available()}'
                             f'\ntorch.cuda.device_count(): {torch.cuda.device_count()}'
                             f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n"
                             f'{install}')

    if not cpu and not mps and torch.cuda.is_available():  # prefer GPU if available
        devices = device.split(',') if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
        n = len(devices)  # device count
        if n > 1 and batch > 0 and batch % n != 0:  # check batch_size is divisible by device_count
            raise ValueError(f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or "
                             f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}.")
        space = ' ' * (len(s) + 1)
        for i, d in enumerate(devices):
            p = torch.cuda.get_device_properties(i)
            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"  # bytes to MB
        arg = 'cuda:0'
    elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available() and TORCH_2_0:
        # Prefer MPS if available
        s += f'MPS ({get_cpu_info()})\n'
        arg = 'mps'
    else:  # revert to CPU
        s += f'CPU ({get_cpu_info()})\n'
        arg = 'cpu'

    if verbose and RANK == -1:
        LOGGER.info(s if newline else s.rstrip())
    return torch.device(arg)


def time_sync():
    """PyTorch-accurate time."""
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()


def fuse_conv_and_bn(conv, bn):
    """Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
    fusedconv = nn.Conv2d(conv.in_channels,
                          conv.out_channels,
                          kernel_size=conv.kernel_size,
                          stride=conv.stride,
                          padding=conv.padding,
                          dilation=conv.dilation,
                          groups=conv.groups,
                          bias=True).requires_grad_(False).to(conv.weight.device)

    # Prepare filters
    w_conv = conv.weight.clone().view(conv.out_channels, -1)
    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))

    # Prepare spatial bias
    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

    return fusedconv


def fuse_deconv_and_bn(deconv, bn):
    """Fuse ConvTranspose2d() and BatchNorm2d() layers."""
    fuseddconv = nn.ConvTranspose2d(deconv.in_channels,
                                    deconv.out_channels,
                                    kernel_size=deconv.kernel_size,
                                    stride=deconv.stride,
                                    padding=deconv.padding,
                                    output_padding=deconv.output_padding,
                                    dilation=deconv.dilation,
                                    groups=deconv.groups,
                                    bias=True).requires_grad_(False).to(deconv.weight.device)

    # Prepare filters
    w_deconv = deconv.weight.clone().view(deconv.out_channels, -1)
    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
    fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape))

    # Prepare spatial bias
    b_conv = torch.zeros(deconv.weight.size(1), device=deconv.weight.device) if deconv.bias is None else deconv.bias
    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
    fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)

    return fuseddconv


def model_info(model, detailed=False, verbose=True, imgsz=640):
    """Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]."""
    if not verbose:
        return
    n_p = get_num_params(model)  # number of parameters
    n_g = get_num_gradients(model)  # number of gradients
    n_l = len(list(model.modules()))  # number of layers
    if detailed:
        LOGGER.info(
            f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
        for i, (name, p) in enumerate(model.named_parameters()):
            name = name.replace('module_list.', '')
            LOGGER.info('%5g %40s %9s %12g %20s %10.3g %10.3g %10s' %
                        (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype))

    flops = get_flops(model, imgsz)
    fused = ' (fused)' if getattr(model, 'is_fused', lambda: False)() else ''
    fs = f', {flops:.1f} GFLOPs' if flops else ''
    yaml_file = getattr(model, 'yaml_file', '') or getattr(model, 'yaml', {}).get('yaml_file', '')
    model_name = Path(yaml_file).stem.replace('yolo', 'YOLO') or 'Model'
    LOGGER.info(f'{model_name} summary{fused}: {n_l} layers, {n_p} parameters, {n_g} gradients{fs}')
    return n_l, n_p, n_g, flops


def get_num_params(model):
    """Return the total number of parameters in a YOLO model."""
    return sum(x.numel() for x in model.parameters())


def get_num_gradients(model):
    """Return the total number of parameters with gradients in a YOLO model."""
    return sum(x.numel() for x in model.parameters() if x.requires_grad)


def model_info_for_loggers(trainer):
    """
    Return model info dict with useful model information.

    Example for YOLOv8n:
        {'model/parameters': 3151904,
         'model/GFLOPs': 8.746,
         'model/speed_ONNX(ms)': 41.244,
         'model/speed_TensorRT(ms)': 3.211,
         'model/speed_PyTorch(ms)': 18.755}
    """
    if trainer.args.profile:  # profile ONNX and TensorRT times
        from ultralytics.utils.benchmarks import ProfileModels
        results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
        results.pop('model/name')
    else:  # only return PyTorch times from most recent validation
        results = {
            'model/parameters': get_num_params(trainer.model),
            'model/GFLOPs': round(get_flops(trainer.model), 3)}
    results['model/speed_PyTorch(ms)'] = round(trainer.validator.speed['inference'], 3)
    return results


def get_flops(model, imgsz=640):
    """Return a YOLO model's FLOPs."""
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        im = torch.empty((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1E9 * 2 if thop else 0  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        return flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
    except Exception:
        return 0


def get_flops_with_torch_profiler(model, imgsz=640):
    """Compute model FLOPs (thop alternative)."""
    if TORCH_2_0:
        model = de_parallel(model)
        p = next(model.parameters())
        stride = (max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32) * 2  # max stride
        im = torch.zeros((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
        with torch.profiler.profile(with_flops=True) as prof:
            model(im)
        flops = sum(x.flops for x in prof.key_averages()) / 1E9
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        flops = flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
        return flops
    return 0


def initialize_weights(model):
    """Initialize model weights to random values."""
    for m in model.modules():
        t = type(m)
        if t is nn.Conv2d:
            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif t is nn.BatchNorm2d:
            m.eps = 1e-3
            m.momentum = 0.03
        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
            m.inplace = True


def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
    # Scales img(bs,3,y,x) by ratio constrained to gs-multiple
    if ratio == 1.0:
        return img
    h, w = img.shape[2:]
    s = (int(h * ratio), int(w * ratio))  # new size
    img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
    if not same_shape:  # pad/crop img
        h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
    return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean


def make_divisible(x, divisor):
    """Returns nearest x divisible by divisor."""
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


def copy_attr(a, b, include=(), exclude=()):
    """Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes."""
    for k, v in b.__dict__.items():
        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
            continue
        else:
            setattr(a, k, v)


def get_latest_opset():
    """Return second-most (for maturity) recently supported ONNX opset by this version of torch."""
    return max(int(k[14:]) for k in vars(torch.onnx) if 'symbolic_opset' in k) - 1  # opset


def intersect_dicts(da, db, exclude=()):
    """Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values."""
    return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}


def is_parallel(model):
    """Returns True if model is of type DP or DDP."""
    return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel))


def de_parallel(model):
    """De-parallelize a model: returns single-GPU model if model is of type DP or DDP."""
    return model.module if is_parallel(model) else model


def one_cycle(y1=0.0, y2=1.0, steps=100):
    """Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf."""
    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1


def init_seeds(seed=0, deterministic=False):
    """Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html."""
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
    # torch.backends.cudnn.benchmark = True  # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
    if deterministic:
        if TORCH_2_0:
            torch.use_deterministic_algorithms(True, warn_only=True)  # warn if deterministic is not possible
            torch.backends.cudnn.deterministic = True
            os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
            os.environ['PYTHONHASHSEED'] = str(seed)
        else:
            LOGGER.warning('WARNING โš ๏ธ Upgrade to torch>=2.0.0 for deterministic training.')
    else:
        torch.use_deterministic_algorithms(False)
        torch.backends.cudnn.deterministic = False


class ModelEMA:
    """Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
    Keeps a moving average of everything in the model state_dict (parameters and buffers)
    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
    To disable EMA set the `enabled` attribute to `False`.
    """

    def __init__(self, model, decay=0.9999, tau=2000, updates=0):
        """Create EMA."""
        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
        self.updates = updates  # number of EMA updates
        self.decay = lambda x: decay * (1 - math.exp(-x / tau))  # decay exponential ramp (to help early epochs)
        for p in self.ema.parameters():
            p.requires_grad_(False)
        self.enabled = True

    def update(self, model):
        """Update EMA parameters."""
        if self.enabled:
            self.updates += 1
            d = self.decay(self.updates)

            msd = de_parallel(model).state_dict()  # model state_dict
            for k, v in self.ema.state_dict().items():
                if v.dtype.is_floating_point:  # true for FP16 and FP32
                    v *= d
                    v += (1 - d) * msd[k].detach()
                    # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype},  model {msd[k].dtype}'

    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
        """Updates attributes and saves stripped model with optimizer removed."""
        if self.enabled:
            copy_attr(self.ema, model, include, exclude)


def strip_optimizer(f: Union[str, Path] = 'best.pt', s: str = '') -> None:
    """
    Strip optimizer from 'f' to finalize training, optionally save as 's'.

    Args:
        f (str): file path to model to strip the optimizer from. Default is 'best.pt'.
        s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten.

    Returns:
        None

    Example:
        ```python
        from pathlib import Path
        from ultralytics.utils.torch_utils import strip_optimizer

        for f in Path('path/to/weights').rglob('*.pt'):
            strip_optimizer(f)
        ```
    """
    # Use dill (if exists) to serialize the lambda functions where pickle does not do this
    try:
        import dill as pickle
    except ImportError:
        import pickle

    x = torch.load(f, map_location=torch.device('cpu'))
    if 'model' not in x:
        LOGGER.info(f'Skipping {f}, not a valid Ultralytics model.')
        return

    if hasattr(x['model'], 'args'):
        x['model'].args = dict(x['model'].args)  # convert from IterableSimpleNamespace to dict
    args = {**DEFAULT_CFG_DICT, **x['train_args']} if 'train_args' in x else None  # combine args
    if x.get('ema'):
        x['model'] = x['ema']  # replace model with ema
    for k in 'optimizer', 'best_fitness', 'ema', 'updates':  # keys
        x[k] = None
    x['epoch'] = -1
    x['model'].half()  # to FP16
    for p in x['model'].parameters():
        p.requires_grad = False
    x['train_args'] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # strip non-default keys
    # x['model'].args = x['train_args']
    torch.save(x, s or f, pickle_module=pickle)
    mb = os.path.getsize(s or f) / 1E6  # filesize
    LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")


def profile(input, ops, n=10, device=None):
    """
    Ultralytics speed, memory and FLOPs profiler.

    Example:
        ```python
        from ultralytics.utils.torch_utils import profile

        input = torch.randn(16, 3, 640, 640)
        m1 = lambda x: x * torch.sigmoid(x)
        m2 = nn.SiLU()
        profile(input, [m1, m2], n=100)  # profile over 100 iterations
        ```
    """
    results = []
    if not isinstance(device, torch.device):
        device = select_device(device)
    LOGGER.info(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
                f"{'input':>24s}{'output':>24s}")

    for x in input if isinstance(input, list) else [input]:
        x = x.to(device)
        x.requires_grad = True
        for m in ops if isinstance(ops, list) else [ops]:
            m = m.to(device) if hasattr(m, 'to') else m  # device
            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
            try:
                flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1E9 * 2 if thop else 0  # GFLOPs
            except Exception:
                flops = 0

            try:
                for _ in range(n):
                    t[0] = time_sync()
                    y = m(x)
                    t[1] = time_sync()
                    try:
                        (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
                        t[2] = time_sync()
                    except Exception:  # no backward method
                        # print(e)  # for debug
                        t[2] = float('nan')
                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
                s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y))  # shapes
                p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0  # parameters
                LOGGER.info(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
                results.append([p, flops, mem, tf, tb, s_in, s_out])
            except Exception as e:
                LOGGER.info(e)
                results.append(None)
            torch.cuda.empty_cache()
    return results


class EarlyStopping:
    """
    Early stopping class that stops training when a specified number of epochs have passed without improvement.
    """

    def __init__(self, patience=50):
        """
        Initialize early stopping object

        Args:
            patience (int, optional): Number of epochs to wait after fitness stops improving before stopping.
        """
        self.best_fitness = 0.0  # i.e. mAP
        self.best_epoch = 0
        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
        self.possible_stop = False  # possible stop may occur next epoch

    def __call__(self, epoch, fitness):
        """
        Check whether to stop training

        Args:
            epoch (int): Current epoch of training
            fitness (float): Fitness value of current epoch

        Returns:
            (bool): True if training should stop, False otherwise
        """
        if fitness is None:  # check if fitness=None (happens when val=False)
            return False

        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
            self.best_epoch = epoch
            self.best_fitness = fitness
        delta = epoch - self.best_epoch  # epochs without improvement
        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
        stop = delta >= self.patience  # stop training if patience exceeded
        if stop:
            LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
                        f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
                        f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
                        f'i.e. `patience=300` or use `patience=0` to disable EarlyStopping.')
        return stop