File size: 13,857 Bytes
ab854b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# Ultralytics YOLO 🚀, AGPL-3.0 license

from collections import abc
from itertools import repeat
from numbers import Number
from typing import List

import numpy as np

from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh


def _ntuple(n):
    """From PyTorch internals."""

    def parse(x):
        """Parse bounding boxes format between XYWH and LTWH."""
        return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n))

    return parse


to_2tuple = _ntuple(2)
to_4tuple = _ntuple(4)

# `xyxy` means left top and right bottom
# `xywh` means center x, center y and width, height(YOLO format)
# `ltwh` means left top and width, height(COCO format)
_formats = ['xyxy', 'xywh', 'ltwh']

__all__ = 'Bboxes',  # tuple or list


class Bboxes:
    """Bounding Boxes class. Only numpy variables are supported."""

    def __init__(self, bboxes, format='xyxy') -> None:
        assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}'
        bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes
        assert bboxes.ndim == 2
        assert bboxes.shape[1] == 4
        self.bboxes = bboxes
        self.format = format
        # self.normalized = normalized

    def convert(self, format):
        """Converts bounding box format from one type to another."""
        assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}'
        if self.format == format:
            return
        elif self.format == 'xyxy':
            func = xyxy2xywh if format == 'xywh' else xyxy2ltwh
        elif self.format == 'xywh':
            func = xywh2xyxy if format == 'xyxy' else xywh2ltwh
        else:
            func = ltwh2xyxy if format == 'xyxy' else ltwh2xywh
        self.bboxes = func(self.bboxes)
        self.format = format

    def areas(self):
        """Return box areas."""
        self.convert('xyxy')
        return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1])

    # def denormalize(self, w, h):
    #    if not self.normalized:
    #         return
    #     assert (self.bboxes <= 1.0).all()
    #     self.bboxes[:, 0::2] *= w
    #     self.bboxes[:, 1::2] *= h
    #     self.normalized = False
    #
    # def normalize(self, w, h):
    #     if self.normalized:
    #         return
    #     assert (self.bboxes > 1.0).any()
    #     self.bboxes[:, 0::2] /= w
    #     self.bboxes[:, 1::2] /= h
    #     self.normalized = True

    def mul(self, scale):
        """
        Args:
            scale (tuple | list | int): the scale for four coords.
        """
        if isinstance(scale, Number):
            scale = to_4tuple(scale)
        assert isinstance(scale, (tuple, list))
        assert len(scale) == 4
        self.bboxes[:, 0] *= scale[0]
        self.bboxes[:, 1] *= scale[1]
        self.bboxes[:, 2] *= scale[2]
        self.bboxes[:, 3] *= scale[3]

    def add(self, offset):
        """
        Args:
            offset (tuple | list | int): the offset for four coords.
        """
        if isinstance(offset, Number):
            offset = to_4tuple(offset)
        assert isinstance(offset, (tuple, list))
        assert len(offset) == 4
        self.bboxes[:, 0] += offset[0]
        self.bboxes[:, 1] += offset[1]
        self.bboxes[:, 2] += offset[2]
        self.bboxes[:, 3] += offset[3]

    def __len__(self):
        """Return the number of boxes."""
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, boxes_list: List['Bboxes'], axis=0) -> 'Bboxes':
        """
        Concatenate a list of Bboxes objects into a single Bboxes object.

        Args:
            boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate.
            axis (int, optional): The axis along which to concatenate the bounding boxes.
                                   Defaults to 0.

        Returns:
            Bboxes: A new Bboxes object containing the concatenated bounding boxes.

        Note:
            The input should be a list or tuple of Bboxes objects.
        """
        assert isinstance(boxes_list, (list, tuple))
        if not boxes_list:
            return cls(np.empty(0))
        assert all(isinstance(box, Bboxes) for box in boxes_list)

        if len(boxes_list) == 1:
            return boxes_list[0]
        return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis))

    def __getitem__(self, index) -> 'Bboxes':
        """
        Retrieve a specific bounding box or a set of bounding boxes using indexing.

        Args:
            index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                               the desired bounding boxes.

        Returns:
            Bboxes: A new Bboxes object containing the selected bounding boxes.

        Raises:
            AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix.

        Note:
            When using boolean indexing, make sure to provide a boolean array with the same
            length as the number of bounding boxes.
        """
        if isinstance(index, int):
            return Bboxes(self.bboxes[index].view(1, -1))
        b = self.bboxes[index]
        assert b.ndim == 2, f'Indexing on Bboxes with {index} failed to return a matrix!'
        return Bboxes(b)


class Instances:

    def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None:
        """
        Args:
            bboxes (ndarray): bboxes with shape [N, 4].
            segments (list | ndarray): segments.
            keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3].
        """
        if segments is None:
            segments = []
        self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format)
        self.keypoints = keypoints
        self.normalized = normalized

        if len(segments) > 0:
            # list[np.array(1000, 2)] * num_samples
            segments = resample_segments(segments)
            # (N, 1000, 2)
            segments = np.stack(segments, axis=0)
        else:
            segments = np.zeros((0, 1000, 2), dtype=np.float32)
        self.segments = segments

    def convert_bbox(self, format):
        """Convert bounding box format."""
        self._bboxes.convert(format=format)

    @property
    def bbox_areas(self):
        """Calculate the area of bounding boxes."""
        return self._bboxes.areas()

    def scale(self, scale_w, scale_h, bbox_only=False):
        """this might be similar with denormalize func but without normalized sign."""
        self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h))
        if bbox_only:
            return
        self.segments[..., 0] *= scale_w
        self.segments[..., 1] *= scale_h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= scale_w
            self.keypoints[..., 1] *= scale_h

    def denormalize(self, w, h):
        """Denormalizes boxes, segments, and keypoints from normalized coordinates."""
        if not self.normalized:
            return
        self._bboxes.mul(scale=(w, h, w, h))
        self.segments[..., 0] *= w
        self.segments[..., 1] *= h
        if self.keypoints is not None:
            self.keypoints[..., 0] *= w
            self.keypoints[..., 1] *= h
        self.normalized = False

    def normalize(self, w, h):
        """Normalize bounding boxes, segments, and keypoints to image dimensions."""
        if self.normalized:
            return
        self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h))
        self.segments[..., 0] /= w
        self.segments[..., 1] /= h
        if self.keypoints is not None:
            self.keypoints[..., 0] /= w
            self.keypoints[..., 1] /= h
        self.normalized = True

    def add_padding(self, padw, padh):
        """Handle rect and mosaic situation."""
        assert not self.normalized, 'you should add padding with absolute coordinates.'
        self._bboxes.add(offset=(padw, padh, padw, padh))
        self.segments[..., 0] += padw
        self.segments[..., 1] += padh
        if self.keypoints is not None:
            self.keypoints[..., 0] += padw
            self.keypoints[..., 1] += padh

    def __getitem__(self, index) -> 'Instances':
        """
        Retrieve a specific instance or a set of instances using indexing.

        Args:
            index (int, slice, or np.ndarray): The index, slice, or boolean array to select
                                               the desired instances.

        Returns:
            Instances: A new Instances object containing the selected bounding boxes,
                       segments, and keypoints if present.

        Note:
            When using boolean indexing, make sure to provide a boolean array with the same
            length as the number of instances.
        """
        segments = self.segments[index] if len(self.segments) else self.segments
        keypoints = self.keypoints[index] if self.keypoints is not None else None
        bboxes = self.bboxes[index]
        bbox_format = self._bboxes.format
        return Instances(
            bboxes=bboxes,
            segments=segments,
            keypoints=keypoints,
            bbox_format=bbox_format,
            normalized=self.normalized,
        )

    def flipud(self, h):
        """Flips the coordinates of bounding boxes, segments, and keypoints vertically."""
        if self._bboxes.format == 'xyxy':
            y1 = self.bboxes[:, 1].copy()
            y2 = self.bboxes[:, 3].copy()
            self.bboxes[:, 1] = h - y2
            self.bboxes[:, 3] = h - y1
        else:
            self.bboxes[:, 1] = h - self.bboxes[:, 1]
        self.segments[..., 1] = h - self.segments[..., 1]
        if self.keypoints is not None:
            self.keypoints[..., 1] = h - self.keypoints[..., 1]

    def fliplr(self, w):
        """Reverses the order of the bounding boxes and segments horizontally."""
        if self._bboxes.format == 'xyxy':
            x1 = self.bboxes[:, 0].copy()
            x2 = self.bboxes[:, 2].copy()
            self.bboxes[:, 0] = w - x2
            self.bboxes[:, 2] = w - x1
        else:
            self.bboxes[:, 0] = w - self.bboxes[:, 0]
        self.segments[..., 0] = w - self.segments[..., 0]
        if self.keypoints is not None:
            self.keypoints[..., 0] = w - self.keypoints[..., 0]

    def clip(self, w, h):
        """Clips bounding boxes, segments, and keypoints values to stay within image boundaries."""
        ori_format = self._bboxes.format
        self.convert_bbox(format='xyxy')
        self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w)
        self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h)
        if ori_format != 'xyxy':
            self.convert_bbox(format=ori_format)
        self.segments[..., 0] = self.segments[..., 0].clip(0, w)
        self.segments[..., 1] = self.segments[..., 1].clip(0, h)
        if self.keypoints is not None:
            self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w)
            self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h)

    def remove_zero_area_boxes(self):
        """Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height. This removes them."""
        good = self.bbox_areas > 0
        if not all(good):
            self._bboxes = self._bboxes[good]
            if len(self.segments):
                self.segments = self.segments[good]
            if self.keypoints is not None:
                self.keypoints = self.keypoints[good]
        return good

    def update(self, bboxes, segments=None, keypoints=None):
        """Updates instance variables."""
        self._bboxes = Bboxes(bboxes, format=self._bboxes.format)
        if segments is not None:
            self.segments = segments
        if keypoints is not None:
            self.keypoints = keypoints

    def __len__(self):
        """Return the length of the instance list."""
        return len(self.bboxes)

    @classmethod
    def concatenate(cls, instances_list: List['Instances'], axis=0) -> 'Instances':
        """
        Concatenates a list of Instances objects into a single Instances object.

        Args:
            instances_list (List[Instances]): A list of Instances objects to concatenate.
            axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0.

        Returns:
            Instances: A new Instances object containing the concatenated bounding boxes,
                       segments, and keypoints if present.

        Note:
            The `Instances` objects in the list should have the same properties, such as
            the format of the bounding boxes, whether keypoints are present, and if the
            coordinates are normalized.
        """
        assert isinstance(instances_list, (list, tuple))
        if not instances_list:
            return cls(np.empty(0))
        assert all(isinstance(instance, Instances) for instance in instances_list)

        if len(instances_list) == 1:
            return instances_list[0]

        use_keypoint = instances_list[0].keypoints is not None
        bbox_format = instances_list[0]._bboxes.format
        normalized = instances_list[0].normalized

        cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis)
        cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis)
        cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None
        return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized)

    @property
    def bboxes(self):
        """Return bounding boxes."""
        return self._bboxes.bboxes