File size: 32,691 Bytes
ab854b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "YOLOv8 Tutorial",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "t6MPjfT5NrKQ"
},
"source": [
"<div align=\"center\">\n",
"\n",
" <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n",
" <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n",
"\n",
"\n",
"<br>\n",
" <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n",
" <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
" <a href=\"https://www.kaggle.com/ultralytics/yolov8\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
"<br>\n",
"\n",
"Welcome to the Ultralytics YOLOv8 π notebook! <a href=\"https://github.com/ultralytics/ultralytics\">YOLOv8</a> is the latest version of the YOLO (You Only Look Once) AI models developed by <a href=\"https://ultralytics.com\">Ultralytics</a>. This notebook serves as the starting point for exploring the various resources available to help you get started with YOLOv8 and understand its features and capabilities.\n",
"\n",
"YOLOv8 models are fast, accurate, and easy to use, making them ideal for various object detection and image segmentation tasks. They can be trained on large datasets and run on diverse hardware platforms, from CPUs to GPUs.\n",
"\n",
"We hope that the resources in this notebook will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n",
"\n",
"</div>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7mGmQbAO5pQb"
},
"source": [
"# Setup\n",
"\n",
"Pip install `ultralytics` and [dependencies](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) and check software and hardware."
]
},
{
"cell_type": "code",
"metadata": {
"id": "wbvMlHd_QwMG",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "27ca383c-0a97-4679-f1c5-ba843f033de7"
},
"source": [
"%pip install ultralytics\n",
"import ultralytics\n",
"ultralytics.checks()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Ultralytics YOLOv8.0.145 π Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"Setup complete β
(2 CPUs, 12.7 GB RAM, 24.2/78.2 GB disk)\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4JnkELT0cIJg"
},
"source": [
"# 1. Predict\n",
"\n",
"YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/usage/cfg/) and other details in the [YOLOv8 Predict Docs](https://docs.ultralytics.com/modes/train/).\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "zR9ZbuQCH7FX",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "64489d1f-e71a-44b5-92f6-2088781ca096"
},
"source": [
"# Run inference on an image with YOLOv8n\n",
"!yolo predict model=yolov8n.pt source='https://ultralytics.com/images/zidane.jpg'"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to 'yolov8n.pt'...\n",
"100% 6.23M/6.23M [00:00<00:00, 77.2MB/s]\n",
"Ultralytics YOLOv8.0.145 π Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients\n",
"\n",
"Downloading https://ultralytics.com/images/zidane.jpg to 'zidane.jpg'...\n",
"100% 165k/165k [00:00<00:00, 7.46MB/s]\n",
"image 1/1 /content/zidane.jpg: 384x640 2 persons, 1 tie, 365.8ms\n",
"Speed: 13.7ms preprocess, 365.8ms inference, 431.7ms postprocess per image at shape (1, 3, 384, 640)\n",
"Results saved to \u001b[1mruns/detect/predict\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hkAzDWJ7cWTr"
},
"source": [
" \n",
"<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/212889447-69e5bdf1-5800-4e29-835e-2ed2336dede2.jpg\" width=\"600\">"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0eq1SMWl6Sfn"
},
"source": [
"# 2. Val\n",
"Validate a model's accuracy on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset's `val` or `test` splits. The latest YOLOv8 [models](https://github.com/ultralytics/ultralytics#models) are downloaded automatically the first time they are used. See [YOLOv8 Val Docs](https://docs.ultralytics.com/modes/val/) for more information."
]
},
{
"cell_type": "code",
"metadata": {
"id": "WQPtK1QYVaD_"
},
"source": [
"# Download COCO val\n",
"import torch\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip') # download (780M - 5000 images)\n",
"!unzip -q tmp.zip -d datasets && rm tmp.zip # unzip"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "X58w8JLpMnjH",
"outputId": "e3aacd98-ceca-49b7-e112-a0c25979ad6c",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Validate YOLOv8n on COCO8 val\n",
"!yolo val model=yolov8n.pt data=coco8.yaml"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Ultralytics YOLOv8.0.145 π Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients\n",
"\n",
"Dataset 'coco8.yaml' images not found β οΈ, missing path '/content/datasets/coco8/images/val'\n",
"Downloading https://ultralytics.com/assets/coco8.zip to '/content/datasets/coco8.zip'...\n",
"100% 433k/433k [00:00<00:00, 12.4MB/s]\n",
"Unzipping /content/datasets/coco8.zip to /content/datasets...\n",
"Dataset download success β
(0.7s), saved to \u001b[1m/content/datasets\u001b[0m\n",
"\n",
"Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n",
"100% 755k/755k [00:00<00:00, 17.5MB/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 276.04it/s]\n",
"\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco8/labels/val.cache\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:03<00:00, 3.84s/it]\n",
" all 4 17 0.621 0.833 0.888 0.63\n",
" person 4 10 0.721 0.5 0.519 0.269\n",
" dog 4 1 0.37 1 0.995 0.597\n",
" horse 4 2 0.751 1 0.995 0.631\n",
" elephant 4 2 0.505 0.5 0.828 0.394\n",
" umbrella 4 1 0.564 1 0.995 0.995\n",
" potted plant 4 1 0.814 1 0.995 0.895\n",
"Speed: 0.3ms preprocess, 78.7ms inference, 0.0ms loss, 65.4ms postprocess per image\n",
"Results saved to \u001b[1mruns/detect/val\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZY2VXXXu74w5"
},
"source": [
"# 3. Train\n",
"\n",
"<p align=\"\"><a href=\"https://bit.ly/ultralytics_hub\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png\"/></a></p>\n",
"\n",
"Train YOLOv8 on [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/) datasets. See [YOLOv8 Train Docs](https://docs.ultralytics.com/modes/train/) for more information."
]
},
{
"cell_type": "code",
"source": [
"#@title Select YOLOv8 π logger {run: 'auto'}\n",
"logger = 'Comet' #@param ['Comet', 'TensorBoard']\n",
"\n",
"if logger == 'Comet':\n",
" %pip install -q comet_ml\n",
" import comet_ml; comet_ml.init()\n",
"elif logger == 'TensorBoard':\n",
" %load_ext tensorboard\n",
" %tensorboard --logdir ."
],
"metadata": {
"id": "ktegpM42AooT"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "1NcFxRcFdJ_O",
"outputId": "b750f2fe-c4d9-4764-b8d5-ed7bd920697b",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Train YOLOv8n on COCO8 for 3 epochs\n",
"!yolo train model=yolov8n.pt data=coco8.yaml epochs=3 imgsz=640"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Ultralytics YOLOv8.0.145 π Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=coco8.yaml, epochs=3, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs/detect/train\n",
"\n",
" from n params module arguments \n",
" 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n",
" 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] \n",
" 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] \n",
" 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n",
" 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] \n",
" 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n",
" 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n",
" 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n",
" 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] \n",
" 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] \n",
" 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n",
" 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n",
" 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] \n",
" 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] \n",
" 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] \n",
" 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n",
" 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n",
" 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n",
" 22 [15, 18, 21] 1 897664 ultralytics.nn.modules.head.Detect [80, [64, 128, 256]] \n",
"Model summary: 225 layers, 3157200 parameters, 3157184 gradients\n",
"\n",
"Transferred 355/355 items from pretrained weights\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/detect/train', view at http://localhost:6006/\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n",
"\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed β
\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/datasets/coco8/labels/train... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<00:00, 860.11it/s]\n",
"\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco8/labels/train.cache\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n",
"\u001b[34m\u001b[1mval: \u001b[0mScanning /content/datasets/coco8/labels/val.cache... 4 images, 0 backgrounds, 0 corrupt: 100% 4/4 [00:00<?, ?it/s]\n",
"Plotting labels to runs/detect/train/labels.jpg... \n",
"\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.000119, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n",
"Image sizes 640 train, 640 val\n",
"Using 2 dataloader workers\n",
"Logging results to \u001b[1mruns/detect/train\u001b[0m\n",
"Starting training for 3 epochs...\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n",
" 1/3 0.761G 0.9273 3.155 1.291 32 640: 100% 1/1 [00:01<00:00, 1.23s/it]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 2.21it/s]\n",
" all 4 17 0.613 0.899 0.888 0.621\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n",
" 2/3 0.78G 1.161 3.126 1.517 33 640: 100% 1/1 [00:00<00:00, 9.06it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 7.18it/s]\n",
" all 4 17 0.601 0.896 0.888 0.613\n",
"\n",
" Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n",
" 3/3 0.757G 0.9264 2.508 1.254 17 640: 100% 1/1 [00:00<00:00, 7.32it/s]\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 5.26it/s]\n",
" all 4 17 0.598 0.892 0.886 0.613\n",
"\n",
"3 epochs completed in 0.003 hours.\n",
"Optimizer stripped from runs/detect/train/weights/last.pt, 6.5MB\n",
"Optimizer stripped from runs/detect/train/weights/best.pt, 6.5MB\n",
"\n",
"Validating runs/detect/train/weights/best.pt...\n",
"Ultralytics YOLOv8.0.145 π Python-3.10.6 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)\n",
"Model summary (fused): 168 layers, 3151904 parameters, 0 gradients\n",
" Class Images Instances Box(P R mAP50 mAP50-95): 100% 1/1 [00:00<00:00, 16.58it/s]\n",
" all 4 17 0.613 0.898 0.888 0.621\n",
" person 4 10 0.661 0.5 0.52 0.285\n",
" dog 4 1 0.337 1 0.995 0.597\n",
" horse 4 2 0.723 1 0.995 0.631\n",
" elephant 4 2 0.629 0.886 0.828 0.319\n",
" umbrella 4 1 0.55 1 0.995 0.995\n",
" potted plant 4 1 0.776 1 0.995 0.895\n",
"Speed: 0.2ms preprocess, 4.6ms inference, 0.0ms loss, 1.1ms postprocess per image\n",
"Results saved to \u001b[1mruns/detect/train\u001b[0m\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# 4. Export\n",
"\n",
"Export a YOLOv8 model to any supported format below with the `format` argument, i.e. `format=onnx`. See [YOLOv8 Export Docs](https://docs.ultralytics.com/modes/export/) for more information.\n",
"\n",
"- π‘ ProTip: Export to [ONNX](https://onnx.ai/) or [OpenVINO](https://docs.openvino.ai/latest/index.html) for up to 3x CPU speedup. \n",
"- π‘ ProTip: Export to [TensorRT](https://developer.nvidia.com/tensorrt) for up to 5x GPU speedup.\n",
"\n",
"\n",
"| Format | `format` Argument | Model | Metadata | Arguments |\n",
"|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|\n",
"| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | β
| - |\n",
"| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | β
| `imgsz`, `optimize` |\n",
"| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | β
| `imgsz`, `half`, `dynamic`, `simplify`, `opset` |\n",
"| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | β
| `imgsz`, `half` |\n",
"| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | β
| `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |\n",
"| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlpackage` | β
| `imgsz`, `half`, `int8`, `nms` |\n",
"| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | β
| `imgsz`, `keras` |\n",
"| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | β | `imgsz` |\n",
"| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | β
| `imgsz`, `half`, `int8` |\n",
"| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | β
| `imgsz` |\n",
"| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | β
| `imgsz` |\n",
"| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | β
| `imgsz` |\n",
"| [ncnn](https://github.com/Tencent/ncnn) | `ncnn` | `yolov8n_ncnn_model/` | β
| `imgsz`, `half` |\n"
],
"metadata": {
"id": "nPZZeNrLCQG6"
}
},
{
"cell_type": "code",
"source": [
"!yolo export model=yolov8n.pt format=torchscript"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CYIjW4igCjqD",
"outputId": "2b65e381-717b-4a6f-d6f5-5254c867f3a4"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Ultralytics YOLOv8.0.145 π Python-3.10.6 torch-2.0.1+cu118 CPU (Intel Xeon 2.30GHz)\n",
"YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients\n",
"\n",
"\u001b[34m\u001b[1mPyTorch:\u001b[0m starting from 'yolov8n.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 84, 8400) (6.2 MB)\n",
"\n",
"\u001b[34m\u001b[1mTorchScript:\u001b[0m starting export with torch 2.0.1+cu118...\n",
"\u001b[34m\u001b[1mTorchScript:\u001b[0m export success β
2.8s, saved as 'yolov8n.torchscript' (12.4 MB)\n",
"\n",
"Export complete (4.6s)\n",
"Results saved to \u001b[1m/content\u001b[0m\n",
"Predict: yolo predict task=detect model=yolov8n.torchscript imgsz=640 \n",
"Validate: yolo val task=detect model=yolov8n.torchscript imgsz=640 data=None \n",
"Visualize: https://netron.app\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# 5. Python Usage\n",
"\n",
"YOLOv8 was reimagined using Python-first principles for the most seamless Python YOLO experience yet. YOLOv8 models can be loaded from a trained checkpoint or created from scratch. Then methods are used to train, val, predict, and export the model. See detailed Python usage examples in the [YOLOv8 Python Docs](https://docs.ultralytics.com/usage/python/)."
],
"metadata": {
"id": "kUMOQ0OeDBJG"
}
},
{
"cell_type": "code",
"source": [
"from ultralytics import YOLO\n",
"\n",
"# Load a model\n",
"model = YOLO('yolov8n.yaml') # build a new model from scratch\n",
"model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)\n",
"\n",
"# Use the model\n",
"results = model.train(data='coco128.yaml', epochs=3) # train the model\n",
"results = model.val() # evaluate model performance on the validation set\n",
"results = model('https://ultralytics.com/images/bus.jpg') # predict on an image\n",
"results = model.export(format='onnx') # export the model to ONNX format"
],
"metadata": {
"id": "bpF9-vS_DAaf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# 6. Tasks\n",
"\n",
"YOLOv8 can train, val, predict and export models for the most common tasks in vision AI: [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/), [Classify](https://docs.ultralytics.com/tasks/classify/) and [Pose](https://docs.ultralytics.com/tasks/pose/). See [YOLOv8 Tasks Docs](https://docs.ultralytics.com/tasks/) for more information.\n",
"\n",
"<br><img width=\"1024\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png\">\n"
],
"metadata": {
"id": "Phm9ccmOKye5"
}
},
{
"cell_type": "markdown",
"source": [
"## 1. Detection\n",
"\n",
"YOLOv8 _detection_ models have no suffix and are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on COCO. See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for full details.\n"
],
"metadata": {
"id": "yq26lwpYK1lq"
}
},
{
"cell_type": "code",
"source": [
"# Load YOLOv8n, train it on COCO128 for 3 epochs and predict an image with it\n",
"from ultralytics import YOLO\n",
"\n",
"model = YOLO('yolov8n.pt') # load a pretrained YOLOv8n detection model\n",
"model.train(data='coco128.yaml', epochs=3) # train the model\n",
"model('https://ultralytics.com/images/bus.jpg') # predict on an image"
],
"metadata": {
"id": "8Go5qqS9LbC5"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## 2. Segmentation\n",
"\n",
"YOLOv8 _segmentation_ models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on COCO. See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for full details.\n"
],
"metadata": {
"id": "7ZW58jUzK66B"
}
},
{
"cell_type": "code",
"source": [
"# Load YOLOv8n-seg, train it on COCO128-seg for 3 epochs and predict an image with it\n",
"from ultralytics import YOLO\n",
"\n",
"model = YOLO('yolov8n-seg.pt') # load a pretrained YOLOv8n segmentation model\n",
"model.train(data='coco128-seg.yaml', epochs=3) # train the model\n",
"model('https://ultralytics.com/images/bus.jpg') # predict on an image"
],
"metadata": {
"id": "WFPJIQl_L5HT"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## 3. Classification\n",
"\n",
"YOLOv8 _classification_ models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on ImageNet. See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for full details.\n"
],
"metadata": {
"id": "ax3p94VNK9zR"
}
},
{
"cell_type": "code",
"source": [
"# Load YOLOv8n-cls, train it on mnist160 for 3 epochs and predict an image with it\n",
"from ultralytics import YOLO\n",
"\n",
"model = YOLO('yolov8n-cls.pt') # load a pretrained YOLOv8n classification model\n",
"model.train(data='mnist160', epochs=3) # train the model\n",
"model('https://ultralytics.com/images/bus.jpg') # predict on an image"
],
"metadata": {
"id": "5q9Zu6zlL5rS"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## 4. Pose\n",
"\n",
"YOLOv8 _pose_ models use the `-pose` suffix, i.e. `yolov8n-pose.pt` and are pretrained on COCO Keypoints. See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for full details."
],
"metadata": {
"id": "SpIaFLiO11TG"
}
},
{
"cell_type": "code",
"source": [
"# Load YOLOv8n-pose, train it on COCO8-pose for 3 epochs and predict an image with it\n",
"from ultralytics import YOLO\n",
"\n",
"model = YOLO('yolov8n-pose.pt') # load a pretrained YOLOv8n classification model\n",
"model.train(data='coco8-pose.yaml', epochs=3) # train the model\n",
"model('https://ultralytics.com/images/bus.jpg') # predict on an image"
],
"metadata": {
"id": "si4aKFNg19vX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "IEijrePND_2I"
},
"source": [
"# Appendix\n",
"\n",
"Additional content below."
]
},
{
"cell_type": "code",
"source": [
"# Git clone and run tests on updates branch\n",
"!git clone https://github.com/ultralytics/ultralytics -b main\n",
"%pip install -qe ultralytics"
],
"metadata": {
"id": "uRKlwxSJdhd1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Run tests (Git clone only)\n",
"!pytest ultralytics/tests"
],
"metadata": {
"id": "GtPlh7mcCGZX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Validate multiple models\n",
"for x in 'nsmlx':\n",
" !yolo val model=yolov8{x}.pt data=coco.yaml"
],
"metadata": {
"id": "Wdc6t_bfzDDk"
},
"execution_count": null,
"outputs": []
}
]
}
|