File size: 14,738 Bytes
ab854b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
---
comments: true
description: Access object detection capabilities of YOLOv8 via our RESTful API. Learn how to use the YOLO Inference API with Python or CLI for swift object detection.
keywords: Ultralytics, YOLOv8, Inference API, object detection, RESTful API, Python, CLI, Quickstart
---

# YOLO Inference API

The YOLO Inference API allows you to access the YOLOv8 object detection capabilities via a RESTful API. This enables you to run object detection on images without the need to install and set up the YOLOv8 environment locally.

![Inference API Screenshot](https://github.com/ultralytics/ultralytics/assets/26833433/c0109ec0-7bb0-46e1-b0d2-bae687960a01)
Screenshot of the Inference API section in the trained model Preview tab.

## API URL

The API URL is the address used to access the YOLO Inference API. In this case, the base URL is:

```
https://api.ultralytics.com/v1/predict
```

## Example Usage in Python

To access the YOLO Inference API with the specified model and API key using Python, you can use the following code:

```python
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
```

In this example, replace `API_KEY` with your actual API key, `MODEL_ID` with the desired model ID, and `path/to/image.jpg` with the path to the image you want to analyze.

## Example Usage with CLI

You can use the YOLO Inference API with the command-line interface (CLI) by utilizing the `curl` command. Replace `API_KEY` with your actual API key, `MODEL_ID` with the desired model ID, and `image.jpg` with the path to the image you want to analyze:

```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
	-H "x-api-key: API_KEY" \
	-F "image=@/path/to/image.jpg" \
	-F "size=640" \
	-F "confidence=0.25" \
	-F "iou=0.45"
```

## Passing Arguments

This command sends a POST request to the YOLO Inference API with the specified `MODEL_ID` in the URL and the `API_KEY` in the request `headers`, along with the image file specified by `@path/to/image.jpg`.

Here's an example of passing the `size`, `confidence`, and `iou` arguments via the API URL using the `requests` library in Python:

```python
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
```

In this example, the `data` dictionary contains the query arguments `size`, `confidence`, and `iou`, which tells the API to run inference at image size 640 with confidence and IoU thresholds of 0.25 and 0.45.

This will send the query parameters along with the file in the POST request. See the table below for a full list of available inference arguments.

| Inference Argument | Default | Type    | Notes                                          |
|--------------------|---------|---------|------------------------------------------------|
| `size`             | `640`   | `int`   | valid range is `32` - `1280` pixels            |
| `confidence`       | `0.25`  | `float` | valid range is `0.01` - `1.0`                  |
| `iou`              | `0.45`  | `float` | valid range is `0.0` - `0.95`                  |
| `url`              | `''`    | `str`   | optional image URL if not image file is passed |
| `normalize`        | `False` | `bool`  |                                                |

## Return JSON format

The YOLO Inference API returns a JSON list with the detection results. The format of the JSON list will be the same as the one produced locally by the `results[0].tojson()` command.

The JSON list contains information about the detected objects, their coordinates, classes, and confidence scores.

### Detect Model Format

YOLO detection models, such as `yolov8n.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format.

!!! example "Detect Model JSON Response"

    === "Local"
        ```python
        from ultralytics import YOLO

        # Load model
        model = YOLO('yolov8n.pt')

        # Run inference
        results = model('image.jpg')

        # Print image.jpg results in JSON format
        print(results[0].tojson())
        ```

    === "CLI API"
        ```bash
        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
            -H "x-api-key: API_KEY" \
            -F "image=@/path/to/image.jpg" \
            -F "size=640" \
            -F "confidence=0.25" \
            -F "iou=0.45"
        ```

    === "Python API"
        ```python
        import requests

        # API URL, use actual MODEL_ID
        url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

        # Headers, use actual API_KEY
        headers = {"x-api-key": "API_KEY"}

        # Inference arguments (optional)
        data = {"size": 640, "confidence": 0.25, "iou": 0.45}

        # Load image and send request
        with open("path/to/image.jpg", "rb") as image_file:
            files = {"image": image_file}
            response = requests.post(url, headers=headers, files=files, data=data)

        print(response.json())
        ```

    === "JSON Response"
        ```json
        {
          "success": True,
          "message": "Inference complete.",
          "data": [
            {
              "name": "person",
              "class": 0,
              "confidence": 0.8359682559967041,
              "box": {
                "x1": 0.08974208831787109,
                "y1": 0.27418340047200523,
                "x2": 0.8706787109375,
                "y2": 0.9887352837456598
              }
            },
            {
              "name": "person",
              "class": 0,
              "confidence": 0.8189555406570435,
              "box": {
                "x1": 0.5847355842590332,
                "y1": 0.05813225640190972,
                "x2": 0.8930277824401855,
                "y2": 0.9903111775716146
              }
            },
            {
              "name": "tie",
              "class": 27,
              "confidence": 0.2909725308418274,
              "box": {
                "x1": 0.3433395862579346,
                "y1": 0.6070465511745877,
                "x2": 0.40964522361755373,
                "y2": 0.9849439832899306
              }
            }
          ]
        }
        ```

### Segment Model Format

YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format.

!!! example "Segment Model JSON Response"

    === "Local"
        ```python
        from ultralytics import YOLO

        # Load model
        model = YOLO('yolov8n-seg.pt')

        # Run inference
        results = model('image.jpg')

        # Print image.jpg results in JSON format
        print(results[0].tojson())
        ```

    === "CLI API"
        ```bash
        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
            -H "x-api-key: API_KEY" \
            -F "image=@/path/to/image.jpg" \
            -F "size=640" \
            -F "confidence=0.25" \
            -F "iou=0.45"
        ```

    === "Python API"
        ```python
        import requests

        # API URL, use actual MODEL_ID
        url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

        # Headers, use actual API_KEY
        headers = {"x-api-key": "API_KEY"}

        # Inference arguments (optional)
        data = {"size": 640, "confidence": 0.25, "iou": 0.45}

        # Load image and send request
        with open("path/to/image.jpg", "rb") as image_file:
            files = {"image": image_file}
            response = requests.post(url, headers=headers, files=files, data=data)

        print(response.json())
        ```

    === "JSON Response"
        Note `segments` `x` and `y` lengths may vary from one object to another. Larger or more complex objects may have more segment points.
        ```json
        {
          "success": True,
          "message": "Inference complete.",
          "data": [
            {
              "name": "person",
              "class": 0,
              "confidence": 0.856913149356842,
              "box": {
                "x1": 0.1064866065979004,
                "y1": 0.2798851860894097,
                "x2": 0.8738358497619629,
                "y2": 0.9894873725043403
              },
              "segments": {
                "x": [
                  0.421875,
                  0.4203124940395355,
                  0.41718751192092896
                  ...
                ],
                "y": [
                  0.2888889014720917,
                  0.2916666567325592,
                  0.2916666567325592
                  ...
                ]
              }
            },
            {
              "name": "person",
              "class": 0,
              "confidence": 0.8512625694274902,
              "box": {
                "x1": 0.5757311820983887,
                "y1": 0.053943040635850696,
                "x2": 0.8960096359252929,
                "y2": 0.985154045952691
              },
              "segments": {
                "x": [
                  0.7515624761581421,
                  0.75,
                  0.7437499761581421
                  ...
                ],
                "y": [
                  0.0555555559694767,
                  0.05833333358168602,
                  0.05833333358168602
                  ...
                ]
              }
            },
            {
              "name": "tie",
              "class": 27,
              "confidence": 0.6485961675643921,
              "box": {
                "x1": 0.33911995887756347,
                "y1": 0.6057066175672743,
                "x2": 0.4081430912017822,
                "y2": 0.9916408962673611
              },
              "segments": {
                "x": [
                  0.37187498807907104,
                  0.37031251192092896,
                  0.3687500059604645
                  ...
                ],
                "y": [
                  0.6111111044883728,
                  0.6138888597488403,
                  0.6138888597488403
                  ...
                ]
              }
            }
          ]
        }
        ```

### Pose Model Format

YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from local inference, CLI API inference, and Python API inference. All of these methods produce the same JSON response format.

!!! example "Pose Model JSON Response"

    === "Local"
        ```python
        from ultralytics import YOLO

        # Load model
        model = YOLO('yolov8n-seg.pt')

        # Run inference
        results = model('image.jpg')

        # Print image.jpg results in JSON format
        print(results[0].tojson())
        ```

    === "CLI API"
        ```bash
        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
            -H "x-api-key: API_KEY" \
            -F "image=@/path/to/image.jpg" \
            -F "size=640" \
            -F "confidence=0.25" \
            -F "iou=0.45"
        ```

    === "Python API"
        ```python
        import requests

        # API URL, use actual MODEL_ID
        url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

        # Headers, use actual API_KEY
        headers = {"x-api-key": "API_KEY"}

        # Inference arguments (optional)
        data = {"size": 640, "confidence": 0.25, "iou": 0.45}

        # Load image and send request
        with open("path/to/image.jpg", "rb") as image_file:
            files = {"image": image_file}
            response = requests.post(url, headers=headers, files=files, data=data)

        print(response.json())
        ```

    === "JSON Response"
        Note COCO-keypoints pretrained models will have 17 human keypoints. The `visible` part of the keypoints indicates whether a keypoint is visible or obscured. Obscured keypoints may be outside the image or may not be visible, i.e. a person's eyes facing away from the camera.
        ```json
        {
          "success": True,
          "message": "Inference complete.",
          "data": [
            {
              "name": "person",
              "class": 0,
              "confidence": 0.8439509868621826,
              "box": {
                "x1": 0.1125,
                "y1": 0.28194444444444444,
                "x2": 0.7953125,
                "y2": 0.9902777777777778
              },
              "keypoints": {
                "x": [
                  0.5058594942092896,
                  0.5103894472122192,
                  0.4920862317085266
                  ...
                ],
                "y": [
                  0.48964157700538635,
                  0.4643048942089081,
                  0.4465252459049225
                  ...
                ],
                "visible": [
                  0.8726999163627625,
                  0.653947651386261,
                  0.9130823612213135
                  ...
                ]
              }
            },
            {
              "name": "person",
              "class": 0,
              "confidence": 0.7474289536476135,
              "box": {
                "x1": 0.58125,
                "y1": 0.0625,
                "x2": 0.8859375,
                "y2": 0.9888888888888889
              },
              "keypoints": {
                "x": [
                  0.778544008731842,
                  0.7976160049438477,
                  0.7530890107154846
                  ...
                ],
                "y": [
                  0.27595141530036926,
                  0.2378823608160019,
                  0.23644638061523438
                  ...
                ],
                "visible": [
                  0.8900790810585022,
                  0.789978563785553,
                  0.8974530100822449
                  ...
                ]
              }
            }
          ]
        }
        ```