File size: 3,752 Bytes
ab854b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include <iostream>
#include <iomanip>
#include "inference.h"
#include <filesystem>
#include <fstream>

void file_iterator(DCSP_CORE *&p) {
    std::filesystem::path current_path = std::filesystem::current_path();
    std::filesystem::path imgs_path = current_path / "images";
    for (auto &i: std::filesystem::directory_iterator(imgs_path)) {
        if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg") {
            std::string img_path = i.path().string();
            cv::Mat img = cv::imread(img_path);
            std::vector<DCSP_RESULT> res;
            p->RunSession(img, res);

            for (auto &re: res) {
                cv::RNG rng(cv::getTickCount());
                cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));

                cv::rectangle(img, re.box, color, 3);

                float confidence = floor(100 * re.confidence) / 100;
                std::cout << std::fixed << std::setprecision(2);
                std::string label = p->classes[re.classId] + " " +
                                    std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4);

                cv::rectangle(
                        img,
                        cv::Point(re.box.x, re.box.y - 25),
                        cv::Point(re.box.x + label.length() * 15, re.box.y),
                        color,
                        cv::FILLED
                );

                cv::putText(
                        img,
                        label,
                        cv::Point(re.box.x, re.box.y - 5),
                        cv::FONT_HERSHEY_SIMPLEX,
                        0.75,
                        cv::Scalar(0, 0, 0),
                        2
                );


            }
            std::cout << "Press any key to exit" << std::endl;
            cv::imshow("Result of Detection", img);
            cv::waitKey(0);
            cv::destroyAllWindows();
        }
    }
}

int read_coco_yaml(DCSP_CORE *&p) {
    // Open the YAML file
    std::ifstream file("coco.yaml");
    if (!file.is_open()) {
        std::cerr << "Failed to open file" << std::endl;
        return 1;
    }

    // Read the file line by line
    std::string line;
    std::vector<std::string> lines;
    while (std::getline(file, line)) {
        lines.push_back(line);
    }

    // Find the start and end of the names section
    std::size_t start = 0;
    std::size_t end = 0;
    for (std::size_t i = 0; i < lines.size(); i++) {
        if (lines[i].find("names:") != std::string::npos) {
            start = i + 1;
        } else if (start > 0 && lines[i].find(':') == std::string::npos) {
            end = i;
            break;
        }
    }

    // Extract the names
    std::vector<std::string> names;
    for (std::size_t i = start; i < end; i++) {
        std::stringstream ss(lines[i]);
        std::string name;
        std::getline(ss, name, ':'); // Extract the number before the delimiter
        std::getline(ss, name); // Extract the string after the delimiter
        names.push_back(name);
    }

    p->classes = names;
    return 0;
}


int main() {
    DCSP_CORE *yoloDetector = new DCSP_CORE;
    std::string model_path = "yolov8n.onnx";
    read_coco_yaml(yoloDetector);
#ifdef USE_CUDA
    // GPU FP32 inference
    DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640},  0.1, 0.5, true };
    // GPU FP16 inference
    // DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640},  0.1, 0.5, true };
#else
    // CPU inference
    DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
#endif
    yoloDetector->CreateSession(params);
    file_iterator(yoloDetector);
}