import gradio as gr | |
from langchain.llms import LlamaCpp | |
from langchain import PromptTemplate, LLMChain | |
from langchain.llms import GPT4All | |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
# import requests | |
# url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin" | |
# response = requests.get(url) | |
# with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f: | |
# f.write(response.content) | |
print("DONE") | |
def func(user): | |
template = """ | |
Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?. | |
Question: {question} | |
Answer: """ | |
prompt = PromptTemplate(template=template, input_variables=["question"]) | |
local_path = ( | |
"./model.bin" | |
) | |
# # Callbacks support token-wise streaming | |
# callbacks = [StreamingStdOutCallbackHandler()] | |
# Verbose is required to pass to the callback manager | |
llm = LlamaCpp(model_path=("./model.bin")) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
question = user | |
llm_chain.run(question) | |
return llm_chain.run(question) | |
iface = gr.Interface(fn=func, inputs="text", outputs="text") | |
iface.launch() | |
# import gradio as gr | |
# from langchain.llms import LlamaCpp | |
# from langchain import PromptTemplate, LLMChain | |
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
# print("DONE") | |
# def func(user): | |
# template = """ | |
# Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?. | |
# Question: {question} | |
# Answer: """ | |
# prompt = PromptTemplate(template=template, input_variables=["question"]) | |
# local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin" | |
# llm = LlamaCpp(model_path=local_path) | |
# llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True) # Enable streaming mode | |
# question = user | |
# llm_chain.run(question) | |
# return llm_chain.run(question) | |
# iface = gr.Interface(fn=func, inputs="text", outputs="text") | |
# iface.launch() | |