llm / app.py
tommy24's picture
Update app.py
448c406
raw
history blame
1.19 kB
import gradio as gr
from langchain import PromptTemplate, LLMChain
from langchain.llms import GPT4All
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
def func(prompt):
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
local_path = (
"https://tommy24-llm.hf.space/file=nous-hermes-13b.ggmlv3.q4_0.bin" # replace with your desired local file path
)
# Callbacks support token-wise streaming
callbacks = [StreamingStdOutCallbackHandler()]
# Verbose is required to pass to the callback manager
llm = GPT4All(model=local_path, callbacks=callbacks, verbose=True)
# If you want to use a custom model add the backend parameter
# Check https://docs.gpt4all.io/gpt4all_python.html for supported backends
llm = GPT4All(model=local_path, backend="gptj", callbacks=callbacks, verbose=True)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = prompt
return llm_chain.run(question)
iface = gr.Interface(fn=func, inputs="text", outputs="text")
iface.launch()