Spaces:
Runtime error
Runtime error
#@title Prepare the Concepts Library to be used | |
import requests | |
import os | |
import gradio as gr | |
import wget | |
import torch | |
from torch import autocast | |
from diffusers import StableDiffusionPipeline | |
from huggingface_hub import HfApi | |
from transformers import CLIPTextModel, CLIPTokenizer | |
import html | |
community_icon_html = "" | |
loading_icon_html = "" | |
share_js = "" | |
api = HfApi() | |
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1) | |
models = [] | |
my_token = os.environ['api_key'] | |
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda") | |
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None): | |
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu") | |
_old_token = token | |
# separate token and the embeds | |
trained_token = list(loaded_learned_embeds.keys())[0] | |
embeds = loaded_learned_embeds[trained_token] | |
# cast to dtype of text_encoder | |
dtype = text_encoder.get_input_embeddings().weight.dtype | |
# add the token in tokenizer | |
token = token if token is not None else trained_token | |
num_added_tokens = tokenizer.add_tokens(token) | |
i = 1 | |
while(num_added_tokens == 0): | |
token = f"{token[:-1]}-{i}>" | |
num_added_tokens = tokenizer.add_tokens(token) | |
i+=1 | |
# resize the token embeddings | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
# get the id for the token and assign the embeds | |
token_id = tokenizer.convert_tokens_to_ids(token) | |
text_encoder.get_input_embeddings().weight.data[token_id] = embeds | |
return token | |
ahx_model_list = [model for model in models_list if "ahx" in model.modelId] | |
ahx_dropdown_list = [model for model in models_list if "ahx-model" in model.modelId] | |
for model in ahx_model_list: | |
model_content = {} | |
model_id = model.modelId | |
model_content["id"] = model_id | |
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin" | |
os.makedirs(model_id,exist_ok = True) | |
if not os.path.exists(f"{model_id}/learned_embeds.bin"): | |
try: | |
wget.download(embeds_url, out=model_id) | |
except: | |
continue | |
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt" | |
response = requests.get(token_identifier) | |
token_name = response.text | |
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt" | |
response = requests.get(concept_type) | |
concept_name = response.text | |
model_content["concept_type"] = concept_name | |
images = [] | |
for i in range(4): | |
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg" | |
image_download = requests.get(url) | |
url_code = image_download.status_code | |
if(url_code == 200): | |
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image | |
file.write(image_download.content) ## Saves file content | |
file.close() | |
images.append(f"{model_id}/{i}.jpeg") | |
model_content["images"] = images | |
#if token cannot be loaded, skip it | |
try: | |
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name) | |
except: | |
continue | |
model_content["token"] = learned_token | |
models.append(model_content) | |
models.append(model_content) | |
# ----------------------------------------------------------------------------------------------- | |
#@title Dropdown Prompt Tab | |
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list] | |
model_tags.sort() | |
import random | |
#@title Gradio Concept Loader | |
DROPDOWNS = {} | |
for model in model_tags: | |
if model != "ahx-model-1" and model != "ahx-model-2": | |
DROPDOWNS[model] = f" in the style of <{model}>" | |
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width): | |
def image_prompt(prompt, guidance, steps, seed, height, width): | |
# prompt = prompt + DROPDOWNS[dropdown] | |
square_pixels = height * width | |
if square_pixels > 640000: | |
height = 640000 // width | |
generator = torch.Generator(device="cuda").manual_seed(int(seed)) | |
return ( | |
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0], | |
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}" | |
) | |
def default_guidance(): | |
return 7.5 | |
def default_steps(): | |
return 30 | |
def default_pixel(): | |
return 768 | |
def random_seed(): | |
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615 | |
def get_models_text(): | |
# make markdown text for available models... | |
markdown_model_tags = [f"<{model}>" for model in model_tags if model != "ahx-model-1" and model != "ahx-model-2"] | |
markdown_model_text = "\n".join(markdown_model_tags) | |
# make markdown text for available betas... | |
markdown_betas_tags = [f"<{model}>" for model in model_tags if "beta" in model] | |
markdown_betas_text = "\n".join(markdown_model_tags) | |
return f"## Available Artist Models / Concepts:\n" + markdown_model_text + "\n\n## Available Beta Models / Concepts:\n" + markdown_betas_text | |
with gr.Blocks(css=".gradio-container {max-width: 650px}") as dropdown_tab: | |
gr.Markdown(''' | |
# π§βπ Advanced Concept Loader | |
This tool allows you to run your own text prompts into fine-tuned artist concepts with individual parameter controls. Text prompts need to manually include artist concept / model tokens, see the examples below. The seed controls the static starting. | |
<br> | |
<br> | |
The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server! | |
<br> | |
<br> | |
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a> | |
''') | |
with gr.Row(): | |
prompt = gr.Textbox(label="image prompt...", elem_id="input-text") | |
with gr.Row(): | |
seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1) | |
with gr.Row(): | |
with gr.Column(): | |
guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True) | |
with gr.Column(): | |
steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True) | |
with gr.Row(): | |
with gr.Column(): | |
width = gr.Slider(144, 4200, label="width", dtype=int, value=default_pixel, step=8, interactive=True) | |
with gr.Column(): | |
height = gr.Slider(144, 4200, label="height", dtype=int, value=default_pixel, step=8, interactive=True) | |
gr.Markdown("<u>heads-up</u>: Height multiplied by width should not exceed about 645,000 or an error may occur. If an error occours refresh your browser tab or errors will continue. If you exceed this range the app will attempt to avoid an error by lowering your input height. We are actively seeking out ways to handle higher resolutions!") | |
go_button = gr.Button("generate image", elem_id="go-button") | |
output = gr.Image(elem_id="output-image") | |
output_text = gr.Text(elem_id="output-text") | |
# go_button.click(fn=image_prompt, inputs=[prompt, dropdown, guidance, steps, seed, height, width], outputs=[output, output_text]) | |
go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width], outputs=[output, output_text]) | |
# gr.Markdown(''' | |
# ## Prompt Examples Using Artist Tokens: | |
# * "an alien in the style of \<ahx-model-12>" | |
# * "a painting in the style of \<ahx-model-11>" | |
# * "a landscape in the style of \<ahx-model-10> and \<ahx-model-14> " | |
# ## Valid Artist Tokens: | |
# ''') | |
gr.Markdown("For a complete list of usable models and beta concepts check out the dropdown selectors in the welcome and beta concepts tabs or the project's main website or our discord.\n\nhttp://www.astronaut.horse/concepts") | |
# ----------------------------------------------------------------------------------------------- | |
#@title Dropdown Prompt Tab | |
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list] | |
model_tags.sort() | |
import random | |
#@title Gradio Concept Loader | |
DROPDOWNS = {} | |
# set a default for empty entries... | |
DROPDOWNS[''] = '' | |
# populate the dropdowns with full appendable style strings... | |
for model in model_tags: | |
if model != "ahx-model-1" and model != "ahx-model-2": | |
DROPDOWNS[model] = f" in the style of <{model}>" | |
# set pipe param defaults... | |
def default_guidance(): | |
return 7.5 | |
def default_steps(): | |
return 30 | |
def default_pixel(): | |
return 768 | |
def random_seed(): | |
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615 | |
def simple_image_prompt(prompt, dropdown, size_dropdown): | |
seed = random_seed() | |
guidance = 7.5 | |
if size_dropdown == 'landscape': | |
height = 624 | |
width = 1024 | |
elif size_dropdown == 'portrait': | |
height = 1024 | |
width = 624 | |
elif size_dropdown == 'square': | |
height = 768 | |
width = 768 | |
else: | |
height = 1024 | |
width = 624 | |
steps = 30 | |
prompt = prompt + DROPDOWNS[dropdown] | |
generator = torch.Generator(device="cuda").manual_seed(int(seed)) | |
return ( | |
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0], | |
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}" | |
) | |
# ~~~ WELCOME TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
rand_model_int = 2 | |
with gr.Blocks(css=".gradio-container {max-width: 650px}") as new_welcome: | |
gr.Markdown(''' | |
# π§βπ Astronaut Horse Concept Loader | |
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally you can play around with more controls in the Advanced Prompting tab. | |
<br> | |
<br> | |
The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server! | |
<br> | |
<br> | |
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a> | |
''') | |
with gr.Row(): | |
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...") | |
size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...") | |
# dropdown = gr.Dropdown(['1 image', '2 images', '3 images', '4 images'], label="output image count...") | |
prompt = gr.Textbox(label="image prompt...", elem_id="input-text") | |
go_button = gr.Button("generate image", elem_id="go-button") | |
output = gr.Image(elem_id="output-image") | |
output_text = gr.Text(elem_id="output-text") | |
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text]) | |
# ----------------------------------------------------------------------------------------------- | |
def infer(text, dropdown): | |
images_list = pipe( | |
[f"{text} in the style of <{dropdown}>"], | |
num_inference_steps=30, | |
guidance_scale=7.5 | |
) | |
return images_list.images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
css = "" | |
examples = [] | |
# ~~~ UNUSED DEMO TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks(css=css) as demo: | |
state = gr.Variable({ | |
'selected': -1 | |
}) | |
state = {} | |
def update_state(i): | |
global checkbox_states | |
if(checkbox_states[i]): | |
checkbox_states[i] = False | |
state[i] = False | |
else: | |
state[i] = True | |
checkbox_states[i] = True | |
gr.Markdown(''' | |
# π§βπ Astronaut Horse Concept Loader | |
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally if you can play around with more controls in the Advanced Prompting tab. Enjoy! | |
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...") | |
text = gr.Textbox( | |
label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input" | |
) | |
btn = gr.Button("generate image",elem_id="run_btn") | |
infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[1]) | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html, visible=False) | |
loading_icon = gr.HTML(loading_icon_html, visible=False) | |
checkbox_states = {} | |
inputs = [text, dropdown] | |
btn.click( | |
infer, | |
inputs=inputs, | |
outputs=[infer_outputs, community_icon, loading_icon] | |
) | |
# ----------------------------------------------------------------------------------------------- | |
# ~~~ BETA TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks() as beta: | |
gr.Markdown(''' | |
# π§βπ Beta Concept Loader | |
This tool allows you to test out newly trained beta concepts trained by artists. These are experimental and may be removed if they are problematic or uninteresting. If they end up successful though they'll be renamed and moved into the primary prompting drop-down. | |
To add to this artists can now freely train new models / concepts using the link below. This uses free access to Google's GPUs but will require a password / key that you can get from our discord. After a new concept / model is trained it will be automatically added to this tab after ~24 hours! | |
<a href="https://colab.research.google.com/drive/1FhOpcEjHT7EN53Zv9MFLQTytZp11wjqg#scrollTo=hzUluHT-I42O">https://colab.research.google.com/astronaut-horse-training-tool</a> | |
''') | |
with gr.Row(): | |
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...") | |
size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...") | |
# dropdown = gr.Dropdown(['1 image', '2 images', '3 images', '4 images'], label="output image count...") | |
prompt = gr.Textbox(label="image prompt...", elem_id="input-text") | |
go_button = gr.Button("generate image", elem_id="go-button") | |
output = gr.Image(elem_id="output-image") | |
output_text = gr.Text(elem_id="output-text") | |
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text]) | |
# with gr.Row(): | |
# prompt = gr.Textbox(label="image prompt...", elem_id="input-text") | |
# go_button = gr.Button("generate image", elem_id="go-button") | |
# output = gr.Image(elem_id="output-image") | |
# output_text = gr.Text(elem_id="output-text") | |
# go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text]) | |
# ----------------------------------------------------------------------------------------------- | |
# ~~~ NOISE STEPS TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks() as noise_steps: | |
gr.Markdown(''' | |
# π§βπ Noise Steps Loader | |
This tool doesn't exist yet! | |
When it's built out though the plan is for it to let you expose the de-noising process that helps define Stable Diffusion image generation. | |
The plan is to let you enter custom a custom prompt / seed etc and see how Stable Diffusion is turning it's starting static image into an image that matches your prompt step-by-step. | |
Hopefully it'll be working soon. Check out the example below for now! | |
 | |
''') | |
#  | |
# dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...") | |
# with gr.Row(): | |
# prompt = gr.Textbox(label="image prompt...", elem_id="input-text") | |
# go_button = gr.Button("generate image", elem_id="go-button") | |
# output = gr.Image(elem_id="output-image") | |
# output_text = gr.Text(elem_id="output-text") | |
# go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown], outputs=[output, output_text]) | |
# ----------------------------------------------------------------------------------------------- | |
# ~~~ Depth Map TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks() as depth_map: | |
gr.Markdown(''' | |
# π§βπ Depth Map Processor | |
This tool doesn't exist yet! When it's built it will let you input any image from your phone or computer and process it into a depth map image using a Stable Diffusion control net process. Hopefully it'll be working soon. Check out the example below for now! | |
 | |
 | |
''') | |
# ----------------------------------------------------------------------------------------------- | |
# ~~~ Control Net TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks() as control_net: | |
gr.Markdown(''' | |
# π§βπ Control Net Processor | |
This tool doesn't exist yet! When it's built it will let you input any image from your phone or computer and process it using any text prompt or combination of trained artist styles / concepts. If you want to play with normal control net without ahx artist concepts check out the link below. [control net](https://huggingface.co/spaces/hysts/ControlNet) | |
''') | |
# ----------------------------------------------------------------------------------------------- | |
# ~~~ TEXTUAL INVERSION TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks() as inversion: | |
gr.Markdown(''' | |
# π§βπ Concept Trainer | |
 | |
This external tool lets you train your own new models / concepts from any images you want that will appear automatically be added to the Beta Concepts and Advanced Prompting tabs! | |
For now the tool lives on Google Colab, which is Google's free tool for using their GPU's. Someday it might live here on our Hugging Face Space, but the process is a little too demanding for our current resources. To train your own concept visit the link below and follow the instructions and be prepared to wait several hours. | |
[textual inversion training tool](https://colab.research.google.com/drive/1FhOpcEjHT7EN53Zv9MFLQTytZp11wjqg#forceEdit=true&sandboxMode=true&scrollTo=ZajfEoWHKAr3) | |
Note that you will need a access_token to run this. You can request this on our discord or get your own free one at the link below. [hugging face access token](https://huggingface.co/docs/hub/security-tokens) | |
''') | |
# ----------------------------------------------------------------------------------------------- | |
# ~~~ DREAM BOOTH TAB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
with gr.Blocks() as dream_booth: | |
gr.Markdown(''' | |
# π§βπ Dream Booth Concept Trainer | |
This tool doesn't exist yet! When it's built it will let you train concepts using a process distinct from our current concept training tool which uses textual inversion training. To read more about Dream Booth check out the link below! | |
[dream booth](https://huggingface.co/spaces/multimodalart/dreambooth-training) | |
''') | |
# ----------------------------------------------------------------------------------------------- | |
# tabbed_interface = gr.TabbedInterface([new_welcome, dropdown_tab, beta, inversion, noise_steps, depth_map, control_net, dream_booth], ["Welcome!", "Advanced Prompting", "Beta Concepts", "Concept Trainer", "Noise Steps", "Depth Map", "Control Net", "Dream Booth"]) | |
tabbed_interface = gr.TabbedInterface([new_welcome, dropdown_tab, beta, inversion, noise_steps, control_net], ["Welcome!", "Advanced Prompting", "Beta Concepts", "Concept Trainer", "Noise Steps", "Depth Map", "Control Net", "Dream Booth"]) | |
tabbed_interface.launch() |