Spaces:
Runtime error
Runtime error
File size: 2,015 Bytes
0d215ca cc85063 0d215ca 3442116 0d215ca bbe538b 0d215ca 3442116 0d215ca 0b3be54 0d215ca bbe538b 0b3be54 0d215ca 71d5313 0d215ca 3442116 0b3be54 0d215ca cc85063 0d215ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
import requests
import time
def infer(prompt, model_name, max_new_tokens=10, temperature=0.0, top_p=1.0):
model_name_map = {
"GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
}
my_post_dict = {
"type": "general",
"payload": {
"max_tokens": int(max_new_tokens),
"n": 1,
"temperature": float(temperature),
"top_p": float(top_p),
"model": model_name_map[model_name],
"prompt": [prompt],
"request_type": "language-model-inference",
"stop": None,
"best_of": 1,
"echo": False,
"seed": 42,
"prompt_embedding": False,
},
"returned_payload": {},
"status": "submitted",
"source": "dalle",
}
job_id = requests.post("https://planetd.shift.ml/jobs", json=my_post_dict).json()['id']
for i in range(100):
time.sleep(1)
ret = requests.get(f"https://planetd.shift.ml/job/{job_id}", json={'id': job_id}).json()
if ret['status'] == 'finished':
break
return ret['returned_payload']['result']['inference_result'][0]['choices'][0]['text']
st.title("TOMA Application")
s_example = "Please answer the following question:\n\nQuestion: Where is Zurich?\nAnswer:"
prompt = st.text_area(
"Prompt",
value=s_example,
max_chars=4096,
height=400,
)
generated_area = st.empty()
generated_area.markdown("(Generate here)")
button_submit = st.button("Submit")
model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
max_new_tokens = st.text_input('Max new tokens', "10")
temperature = st.text_input('temperature', "0.0")
top_p = st.text_input('top_p', "1.0")
if button_submit:
with st.spinner(text="In progress.."):
report_text = infer(prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p)
generated_area.markdown(report_text) |