File size: 5,826 Bytes
55e492d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7147095
55e492d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7147095
55e492d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171c344
 
55e492d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-

import os
import re
import torch
from transformers import (
    AutoTokenizer,
    AutoModel,
    T5ForConditionalGeneration,
    MBartForConditionalGeneration,
    AutoModelForSeq2SeqLM,
)
from tqdm.auto import tqdm
import streamlit as st
from typing import Dict, List


@st.cache_resource
def load_model(model_name, device):
    print(f"Using model {model_name}")
    os.makedirs("cache", exist_ok=True)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir="cache")
    model.to(device)

    model_name = model_name.split("/")[-1]
    load_model_path = os.path.join("models", f"{model_name}-best_loss.bin")
    print(f"Loading model from {load_model_path}")
    model.load_state_dict(
        torch.load(load_model_path, map_location=torch.device(device))
    )

    return model


@st.cache_resource
def load_tokenizer(model_name):
    print(f"Loading tokenizer {model_name}")
    if "mbart" in model_name.lower():
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, src_lang="vi_VN", tgt_lang="vi_VN"
        )
        # tokenizer.src_lang = "vi_VN"
        # tokenizer.tgt_lang = "vi_VN"
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_name)

    return tokenizer


def prepare_batch_model_inputs(batch, tokenizer, max_len, is_train=False, device="cpu"):
    inputs = tokenizer(
        batch["src"],
        text_target=batch["tgt"] if is_train else None,
        padding="longest",
        max_length=max_len,
        truncation=True,
        return_tensors="pt",
    )

    for k, v in inputs.items():
        inputs[k] = v.to(device)

    return inputs


def prepare_single_model_inputs(src, tokenizer, max_len, device="cpu"):
    inputs = tokenizer(
        src,
        padding="longest",
        max_length=max_len,
        truncation=True,
        return_tensors="pt",
    )

    for k, v in inputs.items():
        inputs[k] = v.to(device)

    return inputs


def make_input_sentence_from_strings(data):
    # data = {
    #     "CHỈ TIÊU": objective_name,
    #     "ĐƠN VỊ": unit,
    #     "ĐIỀU KIỆN": condition,
    #     "KPI mục tiêu tháng": kpi_target,
    #     "Đánh giá": evaluation_value,
    #     "Thời gian báo cáo": current_time,
    #     f"T{current_time[1]}.{current_time[0]} thực tế": real_value,
    #     "Previous month value key": f"T{previous_month[1]}.{previous_month[0]}",
    #     f"T{previous_month[1]}.{previous_month[0]}": previous_month_value,
    #     "Previous year value key": f"T{previous_year[1]}.{previous_year[0]}",
    #     f"T{previous_year[1]}.{previous_year[0]}": previous_year_value,
    #     "Previous month compare key": f"So sánh T{previous_month[1]}.{previous_month[0]} Tăng giảm",
    #     f"So sánh T{previous_month[1]}.{previous_month[0]} Tăng giảm": previous_month_compare,
    #     "Previous year compare key": f"So sánh T{previous_year[1]}.{previous_year[0]} Tăng giảm",
    #     "Previous month": previous_month,
    #     "Previous year": previous_year,
    # }

    previous_month_value_key = data["Previous month value key"]
    previous_year_value_key = data["Previous year value key"]
    objective_name = data["CHỈ TIÊU"]
    unit = data["ĐƠN VỊ"]
    condition = data["ĐIỀU KIỆN"]
    kpi_target = data["KPI mục tiêu tháng"]
    current_time = data["Thời gian báo cáo"]
    real_value = data[f"T{current_time[1]}.{current_time[0]} thực tế"]
    evaluation_value = data["Đánh giá"]
    previous_month_value = data[previous_month_value_key]
    previous_year_value = data[previous_year_value_key]
    previous_month_compare_key = data["Previous month compare key"]
    previous_year_compare_key = data["Previous year compare key"]
    previous_month_compare = data[previous_month_compare_key]
    previous_year_compare = data[previous_year_compare_key]
    previous_month = data["Previous month"]
    previous_year = data["Previous year"]

    # make a template string from the following example:
    # """{"CHỈ TIÊU": "Tỷ lệ kết nối thành công đến tổng đài - KHCN_Di động Vip", "ĐƠN VỊ": "%", "ĐIỀU KIỆN": ">=", "KPI mục tiêu tháng": 95.0, "Tháng 9.2022": 97.5, "Đánh giá": "Đạt", "T8.2022": 96.6, "So sánh T8.2022 Tăng giảm": 1.0, "T9.2021": 96.8, "So sánh T9.2021 Tăng giảm": 0.8}"""
    template_str = '"CHỈ TIÊU": "{}", "ĐƠN VỊ": "{}", "ĐIỀU KIỆN": "{}", "KPI mục tiêu tháng": {}, "Tháng {}.{}": {}, "Đánh giá": "{}", "T{}.{}": {}, "So sánh T{}.{} Tăng giảm": {}, "T{}.{}": {}, "So sánh T{}.{} Tăng giảm": {}'
    return template_str.format(
        objective_name,
        unit,
        condition,
        kpi_target,
        current_time[1],
        current_time[0],
        real_value,
        evaluation_value,
        previous_month[1],
        previous_month[0],
        previous_month_value,
        previous_month[1],
        previous_month[0],
        previous_month_compare,
        previous_year[1],
        previous_year[0],
        previous_year_value,
        previous_year[1],
        previous_year[0],
        previous_year_compare,
    )


@torch.no_grad()
def generate_description(
    input_string, model, tokenizer, device, max_len, model_name, beam_size
):
    model.eval()
    model = model.to(device)
    inputs = prepare_single_model_inputs(
        input_string, tokenizer, max_len=max_len, device=device
    )
    if "mbart" in model_name.lower():
        inputs["forced_bos_token_id"] = tokenizer.lang_code_to_id["vi_VN"]
    outputs = model.generate(
        **inputs,
        max_length=max_len,
        num_beams=beam_size,
        # early_stopping=True,
    )
    return tokenizer.batch_decode(
        outputs, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )