verblaze / scripts /vllava /finetune.sh
tlvtech's picture
Upload folder using huggingface_hub
dc71c15 verified
#!/bin/bash
# Environment Variables
ARG_WORLD_SIZE=${1:-1}
ARG_NPROC_PER_NODE=${2:-8}
ARG_MASTER_ADDR="127.0.0.1"
ARG_MASTER_PORT=16666
ARG_RANK=0
# Multiple conditions
if [ ! -n "$WORLD_SIZE" ] || [ ! -n "$NPROC_PER_NODE" ]; then
WORLD_SIZE=$ARG_WORLD_SIZE
NPROC_PER_NODE=$ARG_NPROC_PER_NODE
fi
if [ ! -n "$MASTER_ADDR" ] || [ ! -n "$MASTER_PORT" ] || [ ! -n "$RANK" ]; then
MASTER_ADDR=$ARG_MASTER_ADDR
MASTER_PORT=$ARG_MASTER_PORT
RANK=$ARG_RANK
fi
echo "WORLD_SIZE: $WORLD_SIZE"
echo "NPROC_PER_NODE: $NPROC_PER_NODE"
# Training Arguments
GLOBAL_BATCH_SIZE=128
LOCAL_BATCH_SIZE=4
GRADIENT_ACCUMULATION_STEPS=$[$GLOBAL_BATCH_SIZE/($WORLD_SIZE*$NPROC_PER_NODE*$LOCAL_BATCH_SIZE)]
# Log Arguments
export TRANSFORMERS_OFFLINE=1
export WANDB_PROJECT=videollama2
RUN_NAME=vllava_settings
DATA_DIR=datasets
OUTP_DIR=work_dirs
torchrun --nnodes $WORLD_SIZE \
--nproc_per_node $NPROC_PER_NODE \
--master_addr=$MASTER_ADDR \
--master_port=$MASTER_PORT \
--node_rank $RANK \
videollama2/train_flash_attn.py \
--deepspeed scripts/zero3.json \
--model_type videollama2 \
--model_path mistralai/Mistral-7B-Instruct-v0.2 \
--vision_tower openai/clip-vit-large-patch14-336 \
--mm_projector_type stc_connector_v35 \
--pretrain_mm_mlp_adapter ${OUTP_DIR}/${WANDB_PROJECT}/pretrain_${RUN_NAME}/mm_projector.bin \
--data_path ${DATA_DIR}/videollava_sft/videochatgpt_llavaimage_tune.json \
--data_folder ${DATA_DIR}/videollava_sft/ \
--mm_vision_select_layer -2 \
--image_aspect_ratio pad \
--num_frames 8 \
--bf16 True \
--tf32 True \
--fp16 False \
--output_dir ${OUTP_DIR}/${WANDB_PROJECT}/finetune_${RUN_NAME} \
--num_train_epochs 1 \
--per_device_train_batch_size $LOCAL_BATCH_SIZE \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 500 \
--save_total_limit 99 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--model_max_length 2048 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--report_to tensorboard \
--run_name $RUN_NAME \