Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,10 @@ from pytorch_grad_cam import GradCAM, HiResCAM, ScoreCAM, GradCAMPlusPlus, Ablat
|
|
9 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
10 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
11 |
from timm.data import create_transform
|
|
|
12 |
|
13 |
# List of available timm models
|
14 |
-
MODELS = timm.
|
15 |
|
16 |
# List of available GradCAM methods
|
17 |
CAM_METHODS = {
|
@@ -25,6 +26,16 @@ CAM_METHODS = {
|
|
25 |
"FullGrad": FullGrad
|
26 |
}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def load_model(model_name):
|
29 |
model = timm.create_model(model_name, pretrained=True)
|
30 |
model.eval()
|
@@ -50,9 +61,14 @@ def process_image(image_path, model):
|
|
50 |
tensor = transform(image).unsqueeze(0)
|
51 |
return tensor
|
52 |
|
53 |
-
def get_cam_image(model, image, target_layer, cam_method):
|
|
|
|
|
|
|
|
|
|
|
54 |
cam = CAM_METHODS[cam_method](model=model, target_layers=[target_layer])
|
55 |
-
grayscale_cam = cam(input_tensor=image)
|
56 |
|
57 |
config = model.pretrained_cfg
|
58 |
mean = torch.tensor(config['mean']).view(3, 1, 1)
|
@@ -79,20 +95,35 @@ def get_target_layer(model, target_layer_name):
|
|
79 |
print(f"WARNING: Layer '{target_layer_name}' not found in the model.")
|
80 |
return None
|
81 |
|
82 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
model = load_model(model_name)
|
84 |
image = process_image(image_path, model)
|
85 |
|
86 |
target_layer = get_target_layer(model, feature_module)
|
87 |
|
88 |
if target_layer is None:
|
89 |
-
# Fallback to the last feature module or last convolutional layer
|
90 |
feature_info = get_feature_info(model)
|
91 |
if feature_info:
|
92 |
target_layer = get_target_layer(model, feature_info[-1])
|
93 |
print(f"Using last feature module: {feature_info[-1]}")
|
94 |
else:
|
95 |
-
# Fallback to finding last convolutional layer
|
96 |
for name, module in reversed(list(model.named_modules())):
|
97 |
if isinstance(module, torch.nn.Conv2d):
|
98 |
target_layer = module
|
@@ -102,17 +133,35 @@ def explain_image(model_name, image_path, cam_method, feature_module):
|
|
102 |
if target_layer is None:
|
103 |
raise ValueError("Could not find a suitable target layer.")
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def update_feature_modules(model_name):
|
109 |
model = load_model(model_name)
|
110 |
feature_modules = get_feature_info(model)
|
111 |
return gr.Dropdown(choices=feature_modules, value=feature_modules[-1] if feature_modules else None)
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Blocks() as demo:
|
114 |
-
gr.Markdown("# Explainable AI with timm models")
|
115 |
-
gr.Markdown("Upload an image, select a model, CAM method, and optionally a specific feature module to visualize the explanation.")
|
116 |
|
117 |
with gr.Row():
|
118 |
with gr.Column():
|
@@ -120,17 +169,20 @@ with gr.Blocks() as demo:
|
|
120 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
121 |
cam_method_dropdown = gr.Dropdown(choices=list(CAM_METHODS.keys()), label="Select CAM Method")
|
122 |
feature_module_dropdown = gr.Dropdown(label="Select Feature Module (optional)")
|
|
|
123 |
explain_button = gr.Button("Explain Image")
|
124 |
|
125 |
with gr.Column():
|
126 |
output_image = gr.Image(type="pil", label="Explained Image")
|
|
|
127 |
|
128 |
model_dropdown.change(fn=update_feature_modules, inputs=[model_dropdown], outputs=[feature_module_dropdown])
|
|
|
129 |
|
130 |
explain_button.click(
|
131 |
fn=explain_image,
|
132 |
-
inputs=[model_dropdown, image_input, cam_method_dropdown, feature_module_dropdown],
|
133 |
-
outputs=[output_image]
|
134 |
)
|
135 |
|
136 |
demo.launch()
|
|
|
9 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
10 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
11 |
from timm.data import create_transform
|
12 |
+
from timm.data import infer_imagenet_subset, ImageNetInfo
|
13 |
|
14 |
# List of available timm models
|
15 |
+
MODELS = timm.list_pretrained()
|
16 |
|
17 |
# List of available GradCAM methods
|
18 |
CAM_METHODS = {
|
|
|
26 |
"FullGrad": FullGrad
|
27 |
}
|
28 |
|
29 |
+
class CustomDatasetInfo:
|
30 |
+
def __init__(self, label_names, label_descriptions=None):
|
31 |
+
self.label_names = label_names
|
32 |
+
self.label_descriptions = label_descriptions or label_names
|
33 |
+
|
34 |
+
def index_to_description(self, index, detailed=False):
|
35 |
+
if detailed and self.label_descriptions:
|
36 |
+
return self.label_descriptions[index]
|
37 |
+
return self.label_names[index]
|
38 |
+
|
39 |
def load_model(model_name):
|
40 |
model = timm.create_model(model_name, pretrained=True)
|
41 |
model.eval()
|
|
|
61 |
tensor = transform(image).unsqueeze(0)
|
62 |
return tensor
|
63 |
|
64 |
+
def get_cam_image(model, image, target_layer, cam_method, target_class):
|
65 |
+
if target_class is not None and target_class != "highest scoring":
|
66 |
+
target = ClassifierOutputTarget(target_class)
|
67 |
+
else:
|
68 |
+
target = None
|
69 |
+
|
70 |
cam = CAM_METHODS[cam_method](model=model, target_layers=[target_layer])
|
71 |
+
grayscale_cam = cam(input_tensor=image, targets=[target] if target else None)
|
72 |
|
73 |
config = model.pretrained_cfg
|
74 |
mean = torch.tensor(config['mean']).view(3, 1, 1)
|
|
|
95 |
print(f"WARNING: Layer '{target_layer_name}' not found in the model.")
|
96 |
return None
|
97 |
|
98 |
+
def get_class_names(model):
|
99 |
+
dataset_info = None
|
100 |
+
label_names = model.pretrained_cfg.get("label_names", None)
|
101 |
+
label_descriptions = model.pretrained_cfg.get("label_descriptions", None)
|
102 |
+
if label_names is None:
|
103 |
+
imagenet_subset = infer_imagenet_subset(model)
|
104 |
+
if imagenet_subset:
|
105 |
+
dataset_info = ImageNetInfo(imagenet_subset)
|
106 |
+
else:
|
107 |
+
label_names = [f"LABEL_{i}" for i in range(model.num_classes)]
|
108 |
+
if dataset_info is None:
|
109 |
+
dataset_info = CustomDatasetInfo(
|
110 |
+
label_names=label_names,
|
111 |
+
label_descriptions=label_descriptions,
|
112 |
+
)
|
113 |
+
return dataset_info
|
114 |
+
|
115 |
+
def explain_image(model_name, image_path, cam_method, feature_module, target_class):
|
116 |
model = load_model(model_name)
|
117 |
image = process_image(image_path, model)
|
118 |
|
119 |
target_layer = get_target_layer(model, feature_module)
|
120 |
|
121 |
if target_layer is None:
|
|
|
122 |
feature_info = get_feature_info(model)
|
123 |
if feature_info:
|
124 |
target_layer = get_target_layer(model, feature_info[-1])
|
125 |
print(f"Using last feature module: {feature_info[-1]}")
|
126 |
else:
|
|
|
127 |
for name, module in reversed(list(model.named_modules())):
|
128 |
if isinstance(module, torch.nn.Conv2d):
|
129 |
target_layer = module
|
|
|
133 |
if target_layer is None:
|
134 |
raise ValueError("Could not find a suitable target layer.")
|
135 |
|
136 |
+
target_class_index = None if target_class == "highest scoring" else int(target_class.split(':')[0])
|
137 |
+
cam_image = get_cam_image(model, image, target_layer, cam_method, target_class_index)
|
138 |
+
|
139 |
+
with torch.no_grad():
|
140 |
+
out = model(image)
|
141 |
+
probabilities = out.squeeze(0).softmax(dim=0)
|
142 |
+
values, indices = torch.topk(probabilities, 5) # Top 5 predictions
|
143 |
+
dataset_info = get_class_names(model)
|
144 |
+
labels = [
|
145 |
+
f"{i}: {dataset_info.index_to_description(i.item(), detailed=True)} ({v.item():.2%})"
|
146 |
+
for i, v in zip(indices, values)
|
147 |
+
]
|
148 |
+
|
149 |
+
return cam_image, "\n".join(labels)
|
150 |
|
151 |
def update_feature_modules(model_name):
|
152 |
model = load_model(model_name)
|
153 |
feature_modules = get_feature_info(model)
|
154 |
return gr.Dropdown(choices=feature_modules, value=feature_modules[-1] if feature_modules else None)
|
155 |
|
156 |
+
def update_class_dropdown(model_name):
|
157 |
+
model = load_model(model_name)
|
158 |
+
dataset_info = get_class_names(model)
|
159 |
+
class_names = ["highest scoring"] + [f"{i}: {dataset_info.index_to_description(i, detailed=True)}" for i in range(model.num_classes)]
|
160 |
+
return gr.Dropdown(choices=class_names, value="highest scoring")
|
161 |
+
|
162 |
with gr.Blocks() as demo:
|
163 |
+
gr.Markdown("# Explainable AI with timm models. NOTE: This is a WIP but some models are functioning.")
|
164 |
+
gr.Markdown("Upload an image, select a model, CAM method, and optionally a specific feature module and target class to visualize the explanation.")
|
165 |
|
166 |
with gr.Row():
|
167 |
with gr.Column():
|
|
|
169 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
170 |
cam_method_dropdown = gr.Dropdown(choices=list(CAM_METHODS.keys()), label="Select CAM Method")
|
171 |
feature_module_dropdown = gr.Dropdown(label="Select Feature Module (optional)")
|
172 |
+
class_dropdown = gr.Dropdown(label="Select Target Class (optional)")
|
173 |
explain_button = gr.Button("Explain Image")
|
174 |
|
175 |
with gr.Column():
|
176 |
output_image = gr.Image(type="pil", label="Explained Image")
|
177 |
+
prediction_text = gr.Textbox(label="Top 5 Predictions")
|
178 |
|
179 |
model_dropdown.change(fn=update_feature_modules, inputs=[model_dropdown], outputs=[feature_module_dropdown])
|
180 |
+
model_dropdown.change(fn=update_class_dropdown, inputs=[model_dropdown], outputs=[class_dropdown])
|
181 |
|
182 |
explain_button.click(
|
183 |
fn=explain_image,
|
184 |
+
inputs=[model_dropdown, image_input, cam_method_dropdown, feature_module_dropdown, class_dropdown],
|
185 |
+
outputs=[output_image, prediction_text]
|
186 |
)
|
187 |
|
188 |
demo.launch()
|