timep12345's picture
Update app.py
8d4dc71
import gradio as gr
import pandas as pd
import json
from langchain.document_loaders import DataFrameLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from trafilatura import fetch_url, extract
from trafilatura.spider import focused_crawler
from trafilatura.settings import use_config
def loading_website():
return "Loading..."
def url_changes(url, pages_to_visit, urls_to_scrape, repo_id):
to_visit, links = focused_crawler(url, max_seen_urls=pages_to_visit, max_known_urls=urls_to_scrape)
print(f"{len(links)} to be crawled")
config = use_config()
config.set("DEFAULT", "EXTRACTION_TIMEOUT", "0")
results_df = pd.DataFrame()
for url in links:
downloaded = fetch_url(url)
if downloaded:
result = extract(downloaded, output_format='json', config=config)
result = json.loads(result)
results_df = pd.concat([results_df, pd.DataFrame.from_records([result])])
results_df.to_csv("./data.csv")
df = pd.read_csv("./data.csv")
loader = DataFrameLoader(df, page_content_column="text")
documents = loader.load()
print(f"{len(documents)} documents loaded")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
print(f"documents splitted into {len(texts)} chunks")
embeddings = SentenceTransformerEmbeddings(model_name="jhgan/ko-sroberta-multitask")
persist_directory = './vector_db'
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
retriever = db.as_retriever()
MODEL = 'beomi/KoAlpaca-Polyglot-5.8B'
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype="auto",
)
model.eval()
pipe = pipeline(
'text-generation',
model=model,
tokenizer=MODEL,
max_length=512,
temperature=0,
top_p=0.95,
repetition_penalty=1.15
)
llm = HuggingFacePipeline(pipeline=pipe)
global qa
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0])
history[-1][1] = response['result']
return history
def infer(question):
query = question
result = qa({"query": query})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with your website</h1>
<p style="text-align: center;">Enter target URL, click the "Load website to LangChain" button</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
target_url = gr.Textbox(label="Load URL", placeholder="Enter target URL here. EX: https://www.penta.co.kr/")
#pdf_doc = gr.File(label="Load URL", file_types=['.pdf'], type="file")
repo_id = gr.Dropdown(label="LLM", choices=["google/flan-ul2", "OpenAssistant/oasst-sft-1-pythia-12b", "beomi/KoAlpaca-Polyglot-12.8B"], value="google/flan-ul2")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load website to langchain")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
submit_btn = gr.Button("Send message")
#load_pdf.click(loading_pdf, None, langchain_status, queue=False)
repo_id.change(url_changes, inputs=[target_url, gr.Number(value=5, visible=False), gr.Number(value=50, visible=False), repo_id], outputs=[langchain_status], queue=False)
load_pdf.click(url_changes, inputs=[target_url, gr.Number(value=5, visible=False), gr.Number(value=50, visible=False), repo_id], outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch()