File size: 4,271 Bytes
85ecc61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -- coding: utf-8 --`
import argparse
import os
import random
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import numpy as np
import cv2
from  PIL import Image, ImageEnhance
import numpy as np
# engine
from stable_diffusion_engine import StableDiffusionEngine
# scheduler
from diffusers import PNDMScheduler


def run(engine):
    with st.form(key="request"):
        with st.sidebar:
            prompt = st.text_area(label='Enter prompt')

            with st.expander("Initial image"):
                init_image = st.file_uploader("init_image", type=['jpg','png','jpeg'])
                stroke_width = st.slider("stroke_width", 1, 100, 50)
                stroke_color = st.color_picker("stroke_color", "#00FF00")
                canvas_result = st_canvas(
                    fill_color="rgb(0, 0, 0)",
                    stroke_width = stroke_width,
                    stroke_color = stroke_color,
                    background_color = "#000000",
                    background_image = Image.open(init_image) if init_image else None,
                    height = 512,
                    width = 512,
                    drawing_mode = "freedraw",
                    key = "canvas"
                )

            if init_image is not None:
                init_image = cv2.cvtColor(np.array(Image.open(init_image)), cv2.COLOR_RGB2BGR)

            if canvas_result.image_data is not None:
                mask = cv2.cvtColor(canvas_result.image_data, cv2.COLOR_BGRA2GRAY)
                mask[mask > 0] = 255
            else:
                mask = None

            num_inference_steps = st.select_slider(
                label='num_inference_steps',
                options=range(1, 150),
                value=32
            )

            guidance_scale = st.select_slider(
                label='guidance_scale',
                options=range(1, 21),
                value=7
            )

            strength = st.slider(
                label='strength',
                min_value = 0.0,
                max_value = 1.0,
                value = 0.5
            )

            seed = st.number_input(
                label='seed',
                min_value = 0,
                max_value = 2 ** 31,
                value = random.randint(0, 2 ** 31)
            )

            generate = st.form_submit_button(label = 'Generate')

        if prompt:
            np.random.seed(seed)
            image = engine(
                prompt = prompt,
                init_image = init_image,
                mask = mask,
                strength = strength,
                num_inference_steps = num_inference_steps,
                guidance_scale = guidance_scale
            )
            st.image(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), width=512)

@st.cache(allow_output_mutation=True)
def load_engine(args):
    scheduler = PNDMScheduler(
        beta_start=args.beta_start,
        beta_end=args.beta_end,
        beta_schedule=args.beta_schedule,
        skip_prk_steps = True,
        tensor_format="np"
    )
    engine = StableDiffusionEngine(
        model = args.model,
        scheduler = scheduler,
        tokenizer = args.tokenizer
    )
    return engine


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # pipeline configure
    parser.add_argument("--model", type=str, default="bes-dev/stable-diffusion-v1-4-openvino", help="model name")
    # scheduler params
    parser.add_argument("--beta-start", type=float, default=0.00085, help="LMSDiscreteScheduler::beta_start")
    parser.add_argument("--beta-end", type=float, default=0.012, help="LMSDiscreteScheduler::beta_end")
    parser.add_argument("--beta-schedule", type=str, default="scaled_linear", help="LMSDiscreteScheduler::beta_schedule")
    # tokenizer
    parser.add_argument("--tokenizer", type=str, default="openai/clip-vit-large-patch14", help="tokenizer")

    try:
        args = parser.parse_args()
    except SystemExit as e:
        # This exception will be raised if --help or invalid command line arguments
        # are used. Currently streamlit prevents the program from exiting normally
        # so we have to do a hard exit.
        os._exit(e.code)

    engine = load_engine(args)
    run(engine)