Spaces:
Runtime error
Runtime error
from typing import Literal, Optional, List, Dict, Any, Union | |
import time | |
import shortuuid | |
from pydantic import BaseModel, Field | |
class ErrorResponse(BaseModel): | |
object: str = "error" | |
message: str | |
code: int | |
class ModelPermission(BaseModel): | |
id: str = Field(default_factory=lambda: f"modelperm-{shortuuid.random()}") | |
object: str = "model_permission" | |
created: int = Field(default_factory=lambda: int(time.time())) | |
allow_create_engine: bool = False | |
allow_sampling: bool = True | |
allow_logprobs: bool = True | |
allow_search_indices: bool = True | |
allow_view: bool = True | |
allow_fine_tuning: bool = False | |
organization: str = "*" | |
group: Optional[str] = None | |
is_blocking: str = False | |
class ModelCard(BaseModel): | |
id: str | |
object: str = "model" | |
created: int = Field(default_factory=lambda: int(time.time())) | |
owned_by: str = "fastchat" | |
root: Optional[str] = None | |
parent: Optional[str] = None | |
permission: List[ModelPermission] = [] | |
class ModelList(BaseModel): | |
object: str = "list" | |
data: List[ModelCard] = [] | |
class UsageInfo(BaseModel): | |
prompt_tokens: int = 0 | |
total_tokens: int = 0 | |
completion_tokens: Optional[int] = 0 | |
class LogProbs(BaseModel): | |
text_offset: List[int] = Field(default_factory=list) | |
token_logprobs: List[Optional[float]] = Field(default_factory=list) | |
tokens: List[str] = Field(default_factory=list) | |
top_logprobs: List[Optional[Dict[str, float]]] = Field(default_factory=list) | |
class ChatCompletionRequest(BaseModel): | |
model: str | |
messages: Union[str, List[Dict[str, str]]] | |
temperature: Optional[float] = 0.7 | |
top_p: Optional[float] = 1.0 | |
top_k: Optional[int] = -1 | |
n: Optional[int] = 1 | |
max_tokens: Optional[int] = None | |
stop: Optional[Union[str, List[str]]] = None | |
stream: Optional[bool] = False | |
presence_penalty: Optional[float] = 0.0 | |
frequency_penalty: Optional[float] = 0.0 | |
user: Optional[str] = None | |
class ChatMessage(BaseModel): | |
role: str | |
content: str | |
class ChatCompletionResponseChoice(BaseModel): | |
index: int | |
message: ChatMessage | |
finish_reason: Optional[Literal["stop", "length"]] = None | |
class ChatCompletionResponse(BaseModel): | |
id: str = Field(default_factory=lambda: f"chatcmpl-{shortuuid.random()}") | |
object: str = "chat.completion" | |
created: int = Field(default_factory=lambda: int(time.time())) | |
model: str | |
choices: List[ChatCompletionResponseChoice] | |
usage: UsageInfo | |
class DeltaMessage(BaseModel): | |
role: Optional[str] = None | |
content: Optional[str] = None | |
class ChatCompletionResponseStreamChoice(BaseModel): | |
index: int | |
delta: DeltaMessage | |
finish_reason: Optional[Literal["stop", "length"]] = None | |
class ChatCompletionStreamResponse(BaseModel): | |
id: str = Field(default_factory=lambda: f"chatcmpl-{shortuuid.random()}") | |
object: str = "chat.completion.chunk" | |
created: int = Field(default_factory=lambda: int(time.time())) | |
model: str | |
choices: List[ChatCompletionResponseStreamChoice] | |
class TokenCheckRequestItem(BaseModel): | |
model: str | |
prompt: str | |
max_tokens: int | |
class TokenCheckRequest(BaseModel): | |
prompts: List[TokenCheckRequestItem] | |
class TokenCheckResponseItem(BaseModel): | |
fits: bool | |
tokenCount: int | |
contextLength: int | |
class TokenCheckResponse(BaseModel): | |
prompts: List[TokenCheckResponseItem] | |
class EmbeddingsRequest(BaseModel): | |
model: Optional[str] = None | |
engine: Optional[str] = None | |
input: Union[str, List[Any]] | |
user: Optional[str] = None | |
encoding_format: Optional[str] = None | |
class EmbeddingsResponse(BaseModel): | |
object: str = "list" | |
data: List[Dict[str, Any]] | |
model: str | |
usage: UsageInfo | |
class CompletionRequest(BaseModel): | |
model: str | |
prompt: Union[str, List[Any]] | |
suffix: Optional[str] = None | |
temperature: Optional[float] = 0.7 | |
n: Optional[int] = 1 | |
max_tokens: Optional[int] = 16 | |
stop: Optional[Union[str, List[str]]] = None | |
stream: Optional[bool] = False | |
top_p: Optional[float] = 1.0 | |
top_k: Optional[int] = -1 | |
logprobs: Optional[int] = None | |
echo: Optional[bool] = False | |
presence_penalty: Optional[float] = 0.0 | |
frequency_penalty: Optional[float] = 0.0 | |
user: Optional[str] = None | |
use_beam_search: Optional[bool] = False | |
best_of: Optional[int] = None | |
class CompletionResponseChoice(BaseModel): | |
index: int | |
text: str | |
logprobs: Optional[LogProbs] = None | |
finish_reason: Optional[Literal["stop", "length"]] = None | |
class CompletionResponse(BaseModel): | |
id: str = Field(default_factory=lambda: f"cmpl-{shortuuid.random()}") | |
object: str = "text_completion" | |
created: int = Field(default_factory=lambda: int(time.time())) | |
model: str | |
choices: List[CompletionResponseChoice] | |
usage: UsageInfo | |
class CompletionResponseStreamChoice(BaseModel): | |
index: int | |
text: str | |
logprobs: Optional[LogProbs] = None | |
finish_reason: Optional[Literal["stop", "length"]] = None | |
class CompletionStreamResponse(BaseModel): | |
id: str = Field(default_factory=lambda: f"cmpl-{shortuuid.random()}") | |
object: str = "text_completion" | |
created: int = Field(default_factory=lambda: int(time.time())) | |
model: str | |
choices: List[CompletionResponseStreamChoice] | |