Spaces:
Runtime error
Runtime error
""" | |
Apply the delta weights on top of a base model. | |
Usage: | |
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta-v1.1 | |
""" | |
import argparse | |
import gc | |
import glob | |
import json | |
import os | |
import shutil | |
import tempfile | |
from huggingface_hub import snapshot_download | |
import torch | |
from torch import nn | |
from tqdm import tqdm | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig | |
GB = 1 << 30 | |
def split_files(model_path, tmp_path, split_size): | |
if not os.path.exists(model_path): | |
model_path = snapshot_download(repo_id=model_path) | |
if not os.path.exists(tmp_path): | |
os.makedirs(tmp_path) | |
file_pattern = os.path.join(model_path, "pytorch_model-*.bin") | |
files = glob.glob(file_pattern) | |
part = 0 | |
try: | |
for file_path in tqdm(files): | |
state_dict = torch.load(file_path) | |
new_state_dict = {} | |
current_size = 0 | |
for name, param in state_dict.items(): | |
param_size = param.numel() * param.element_size() | |
if current_size + param_size > split_size: | |
new_file_name = f"pytorch_model-{part}.bin" | |
new_file_path = os.path.join(tmp_path, new_file_name) | |
torch.save(new_state_dict, new_file_path) | |
current_size = 0 | |
new_state_dict = None | |
gc.collect() | |
new_state_dict = {} | |
part += 1 | |
new_state_dict[name] = param | |
current_size += param_size | |
new_file_name = f"pytorch_model-{part}.bin" | |
new_file_path = os.path.join(tmp_path, new_file_name) | |
torch.save(new_state_dict, new_file_path) | |
new_state_dict = None | |
gc.collect() | |
new_state_dict = {} | |
part += 1 | |
except Exception as e: | |
print(f"An error occurred during split_files: {e}") | |
shutil.rmtree(tmp_path) | |
raise | |
def apply_delta_low_cpu_mem(base_model_path, target_model_path, delta_path): | |
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) | |
delta_config = AutoConfig.from_pretrained(delta_path) | |
if os.path.exists(target_model_path): | |
shutil.rmtree(target_model_path) | |
os.makedirs(target_model_path) | |
split_size = 4 * GB | |
with tempfile.TemporaryDirectory() as tmp_base_path, tempfile.TemporaryDirectory() as tmp_delta_path: | |
print(f"Split files for the base model to {tmp_base_path}") | |
split_files(base_model_path, tmp_base_path, split_size) | |
print(f"Split files for the delta weights to {tmp_delta_path}") | |
split_files(delta_path, tmp_delta_path, split_size) | |
base_pattern = os.path.join(tmp_base_path, "pytorch_model-*.bin") | |
base_files = glob.glob(base_pattern) | |
delta_pattern = os.path.join(tmp_delta_path, "pytorch_model-*.bin") | |
delta_files = glob.glob(delta_pattern) | |
delta_state_dict = torch.load(delta_files[0]) | |
print("Applying the delta") | |
weight_map = {} | |
total_size = 0 | |
for i, base_file in tqdm(enumerate(base_files)): | |
state_dict = torch.load(base_file) | |
file_name = f"pytorch_model-{i}.bin" | |
for name, param in state_dict.items(): | |
if name not in delta_state_dict: | |
for delta_file in delta_files: | |
delta_state_dict = torch.load(delta_file) | |
gc.collect() | |
if name in delta_state_dict: | |
break | |
state_dict[name] += delta_state_dict[name] | |
weight_map[name] = file_name | |
total_size += param.numel() * param.element_size() | |
gc.collect() | |
torch.save(state_dict, os.path.join(target_model_path, file_name)) | |
with open( | |
os.path.join(target_model_path, "pytorch_model.bin.index.json"), "w" | |
) as f: | |
json.dump( | |
{"weight_map": weight_map, "metadata": {"total_size": total_size}}, f | |
) | |
print(f"Saving the target model to {target_model_path}") | |
delta_tokenizer.save_pretrained(target_model_path) | |
delta_config.save_pretrained(target_model_path) | |
def apply_delta(base_model_path, target_model_path, delta_path): | |
print(f"Loading the delta weights from {delta_path}") | |
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) | |
delta = AutoModelForCausalLM.from_pretrained( | |
delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True | |
) | |
print(f"Loading the base model from {base_model_path}") | |
base = AutoModelForCausalLM.from_pretrained( | |
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True | |
) | |
print("Applying the delta") | |
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"): | |
assert name in delta.state_dict() | |
param.data += delta.state_dict()[name] | |
print(f"Saving the target model to {target_model_path}") | |
base.save_pretrained(target_model_path) | |
delta_tokenizer.save_pretrained(target_model_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base-model-path", type=str, required=True) | |
parser.add_argument("--target-model-path", type=str, required=True) | |
parser.add_argument("--delta-path", type=str, required=True) | |
parser.add_argument( | |
"--low-cpu-mem", | |
action="store_true", | |
help="Lower the cpu memory usage. This will split large files and use " | |
"disk as swap to reduce the memory usage below 10GB.", | |
) | |
args = parser.parse_args() | |
if args.low_cpu_mem: | |
apply_delta_low_cpu_mem( | |
args.base_model_path, args.target_model_path, args.delta_path | |
) | |
else: | |
apply_delta(args.base_model_path, args.target_model_path, args.delta_path) | |