Spaces:
Build error
Build error
import math | |
import argparse | |
import os | |
import torch | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
import library.model_util as model_util | |
import lora | |
CLAMP_QUANTILE = 0.99 | |
def load_state_dict(file_name, dtype): | |
if os.path.splitext(file_name)[1] == '.safetensors': | |
sd = load_file(file_name) | |
else: | |
sd = torch.load(file_name, map_location='cpu') | |
for key in list(sd.keys()): | |
if type(sd[key]) == torch.Tensor: | |
sd[key] = sd[key].to(dtype) | |
return sd | |
def save_to_file(file_name, state_dict, dtype): | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
if type(state_dict[key]) == torch.Tensor: | |
state_dict[key] = state_dict[key].to(dtype) | |
if os.path.splitext(file_name)[1] == '.safetensors': | |
save_file(state_dict, file_name) | |
else: | |
torch.save(state_dict, file_name) | |
def merge_lora_models(models, ratios, new_rank, new_conv_rank, device, merge_dtype): | |
print(f"new rank: {new_rank}, new conv rank: {new_conv_rank}") | |
merged_sd = {} | |
for model, ratio in zip(models, ratios): | |
print(f"loading: {model}") | |
lora_sd = load_state_dict(model, merge_dtype) | |
# merge | |
print(f"merging...") | |
for key in tqdm(list(lora_sd.keys())): | |
if 'lora_down' not in key: | |
continue | |
lora_module_name = key[:key.rfind(".lora_down")] | |
down_weight = lora_sd[key] | |
network_dim = down_weight.size()[0] | |
up_weight = lora_sd[lora_module_name + '.lora_up.weight'] | |
alpha = lora_sd.get(lora_module_name + '.alpha', network_dim) | |
in_dim = down_weight.size()[1] | |
out_dim = up_weight.size()[0] | |
conv2d = len(down_weight.size()) == 4 | |
kernel_size = None if not conv2d else down_weight.size()[2:4] | |
# print(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size) | |
# make original weight if not exist | |
if lora_module_name not in merged_sd: | |
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype) | |
if device: | |
weight = weight.to(device) | |
else: | |
weight = merged_sd[lora_module_name] | |
# merge to weight | |
if device: | |
up_weight = up_weight.to(device) | |
down_weight = down_weight.to(device) | |
# W <- W + U * D | |
scale = (alpha / network_dim) | |
if device: # and isinstance(scale, torch.Tensor): | |
scale = scale.to(device) | |
if not conv2d: # linear | |
weight = weight + ratio * (up_weight @ down_weight) * scale | |
elif kernel_size == (1, 1): | |
weight = weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2) | |
).unsqueeze(2).unsqueeze(3) * scale | |
else: | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
weight = weight + ratio * conved * scale | |
merged_sd[lora_module_name] = weight | |
# extract from merged weights | |
print("extract new lora...") | |
merged_lora_sd = {} | |
with torch.no_grad(): | |
for lora_module_name, mat in tqdm(list(merged_sd.items())): | |
conv2d = (len(mat.size()) == 4) | |
kernel_size = None if not conv2d else mat.size()[2:4] | |
conv2d_3x3 = conv2d and kernel_size != (1, 1) | |
out_dim, in_dim = mat.size()[0:2] | |
if conv2d: | |
if conv2d_3x3: | |
mat = mat.flatten(start_dim=1) | |
else: | |
mat = mat.squeeze() | |
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank | |
module_new_rank = min(module_new_rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim | |
U, S, Vh = torch.linalg.svd(mat) | |
U = U[:, :module_new_rank] | |
S = S[:module_new_rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:module_new_rank, :] | |
dist = torch.cat([U.flatten(), Vh.flatten()]) | |
hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
low_val = -hi_val | |
U = U.clamp(low_val, hi_val) | |
Vh = Vh.clamp(low_val, hi_val) | |
if conv2d: | |
U = U.reshape(out_dim, module_new_rank, 1, 1) | |
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1]) | |
up_weight = U | |
down_weight = Vh | |
merged_lora_sd[lora_module_name + '.lora_up.weight'] = up_weight.to("cpu").contiguous() | |
merged_lora_sd[lora_module_name + '.lora_down.weight'] = down_weight.to("cpu").contiguous() | |
merged_lora_sd[lora_module_name + '.alpha'] = torch.tensor(module_new_rank) | |
return merged_lora_sd | |
def merge(args): | |
assert len(args.models) == len(args.ratios), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" | |
def str_to_dtype(p): | |
if p == 'float': | |
return torch.float | |
if p == 'fp16': | |
return torch.float16 | |
if p == 'bf16': | |
return torch.bfloat16 | |
return None | |
merge_dtype = str_to_dtype(args.precision) | |
save_dtype = str_to_dtype(args.save_precision) | |
if save_dtype is None: | |
save_dtype = merge_dtype | |
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank | |
state_dict = merge_lora_models(args.models, args.ratios, args.new_rank, new_conv_rank, args.device, merge_dtype) | |
print(f"saving model to: {args.save_to}") | |
save_to_file(args.save_to, state_dict, save_dtype) | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--save_precision", type=str, default=None, | |
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ") | |
parser.add_argument("--precision", type=str, default="float", | |
choices=["float", "fp16", "bf16"], help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)") | |
parser.add_argument("--save_to", type=str, default=None, | |
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") | |
parser.add_argument("--models", type=str, nargs='*', | |
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors") | |
parser.add_argument("--ratios", type=float, nargs='*', | |
help="ratios for each model / それぞれのLoRAモデルの比率") | |
parser.add_argument("--new_rank", type=int, default=4, | |
help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") | |
parser.add_argument("--new_conv_rank", type=int, default=None, | |
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ") | |
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") | |
return parser | |
if __name__ == '__main__': | |
parser = setup_parser() | |
args = parser.parse_args() | |
merge(args) | |