Spaces:
Build error
Build error
# extract approximating LoRA by svd from two SD models | |
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py | |
# Thanks to cloneofsimo! | |
import argparse | |
import os | |
import torch | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
import library.model_util as model_util | |
import lora | |
CLAMP_QUANTILE = 0.99 | |
MIN_DIFF = 1e-6 | |
def save_to_file(file_name, model, state_dict, dtype): | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
if type(state_dict[key]) == torch.Tensor: | |
state_dict[key] = state_dict[key].to(dtype) | |
if os.path.splitext(file_name)[1] == '.safetensors': | |
save_file(model, file_name) | |
else: | |
torch.save(model, file_name) | |
def svd(args): | |
def str_to_dtype(p): | |
if p == 'float': | |
return torch.float | |
if p == 'fp16': | |
return torch.float16 | |
if p == 'bf16': | |
return torch.bfloat16 | |
return None | |
save_dtype = str_to_dtype(args.save_precision) | |
print(f"loading SD model : {args.model_org}") | |
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org) | |
print(f"loading SD model : {args.model_tuned}") | |
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned) | |
# create LoRA network to extract weights: Use dim (rank) as alpha | |
if args.conv_dim is None: | |
kwargs = {} | |
else: | |
kwargs = {"conv_dim": args.conv_dim, "conv_alpha": args.conv_dim} | |
lora_network_o = lora.create_network(1.0, args.dim, args.dim, None, text_encoder_o, unet_o, **kwargs) | |
lora_network_t = lora.create_network(1.0, args.dim, args.dim, None, text_encoder_t, unet_t, **kwargs) | |
assert len(lora_network_o.text_encoder_loras) == len( | |
lora_network_t.text_encoder_loras), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) " | |
# get diffs | |
diffs = {} | |
text_encoder_different = False | |
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)): | |
lora_name = lora_o.lora_name | |
module_o = lora_o.org_module | |
module_t = lora_t.org_module | |
diff = module_t.weight - module_o.weight | |
# Text Encoder might be same | |
if torch.max(torch.abs(diff)) > MIN_DIFF: | |
text_encoder_different = True | |
diff = diff.float() | |
diffs[lora_name] = diff | |
if not text_encoder_different: | |
print("Text encoder is same. Extract U-Net only.") | |
lora_network_o.text_encoder_loras = [] | |
diffs = {} | |
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)): | |
lora_name = lora_o.lora_name | |
module_o = lora_o.org_module | |
module_t = lora_t.org_module | |
diff = module_t.weight - module_o.weight | |
diff = diff.float() | |
if args.device: | |
diff = diff.to(args.device) | |
diffs[lora_name] = diff | |
# make LoRA with svd | |
print("calculating by svd") | |
lora_weights = {} | |
with torch.no_grad(): | |
for lora_name, mat in tqdm(list(diffs.items())): | |
# if args.conv_dim is None, diffs do not include LoRAs for conv2d-3x3 | |
conv2d = (len(mat.size()) == 4) | |
kernel_size = None if not conv2d else mat.size()[2:4] | |
conv2d_3x3 = conv2d and kernel_size != (1, 1) | |
rank = args.dim if not conv2d_3x3 or args.conv_dim is None else args.conv_dim | |
out_dim, in_dim = mat.size()[0:2] | |
if args.device: | |
mat = mat.to(args.device) | |
# print(lora_name, mat.size(), mat.device, rank, in_dim, out_dim) | |
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim | |
if conv2d: | |
if conv2d_3x3: | |
mat = mat.flatten(start_dim=1) | |
else: | |
mat = mat.squeeze() | |
U, S, Vh = torch.linalg.svd(mat) | |
U = U[:, :rank] | |
S = S[:rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:rank, :] | |
dist = torch.cat([U.flatten(), Vh.flatten()]) | |
hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
low_val = -hi_val | |
U = U.clamp(low_val, hi_val) | |
Vh = Vh.clamp(low_val, hi_val) | |
if conv2d: | |
U = U.reshape(out_dim, rank, 1, 1) | |
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) | |
U = U.to("cpu").contiguous() | |
Vh = Vh.to("cpu").contiguous() | |
lora_weights[lora_name] = (U, Vh) | |
# make state dict for LoRA | |
lora_sd = {} | |
for lora_name, (up_weight, down_weight) in lora_weights.items(): | |
lora_sd[lora_name + '.lora_up.weight'] = up_weight | |
lora_sd[lora_name + '.lora_down.weight'] = down_weight | |
lora_sd[lora_name + '.alpha'] = torch.tensor(down_weight.size()[0]) | |
# load state dict to LoRA and save it | |
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoder_o, unet_o, weights_sd=lora_sd) | |
lora_network_save.apply_to(text_encoder_o, unet_o) # create internal module references for state_dict | |
info = lora_network_save.load_state_dict(lora_sd) | |
print(f"Loading extracted LoRA weights: {info}") | |
dir_name = os.path.dirname(args.save_to) | |
if dir_name and not os.path.exists(dir_name): | |
os.makedirs(dir_name, exist_ok=True) | |
# minimum metadata | |
metadata = {"ss_network_module": "networks.lora", "ss_network_dim": str(args.dim), "ss_network_alpha": str(args.dim)} | |
lora_network_save.save_weights(args.save_to, save_dtype, metadata) | |
print(f"LoRA weights are saved to: {args.save_to}") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--v2", action='store_true', | |
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む') | |
parser.add_argument("--save_precision", type=str, default=None, | |
choices=[None, "float", "fp16", "bf16"], help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat") | |
parser.add_argument("--model_org", type=str, default=None, | |
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors") | |
parser.add_argument("--model_tuned", type=str, default=None, | |
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors") | |
parser.add_argument("--save_to", type=str, default=None, | |
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") | |
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)") | |
parser.add_argument("--conv_dim", type=int, default=None, | |
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数(rank)(デフォルトNone、適用なし)") | |
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") | |
return parser | |
if __name__ == '__main__': | |
parser = setup_parser() | |
args = parser.parse_args() | |
svd(args) | |