thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
# some codes are copied from:
# https://github.com/huawei-noah/KD-NLP/blob/main/DyLoRA/
# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved.
# Changes made to the original code:
# 2022.08.20 - Integrate the DyLoRA layer for the LoRA Linear layer
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import math
import os
import random
from typing import List, Tuple, Union
import torch
from torch import nn
class DyLoRAModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
# NOTE: support dropout in future
def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, unit=1):
super().__init__()
self.lora_name = lora_name
self.lora_dim = lora_dim
self.unit = unit
assert self.lora_dim % self.unit == 0, "rank must be a multiple of unit"
if org_module.__class__.__name__ == "Conv2d":
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
self.is_conv2d = org_module.__class__.__name__ == "Conv2d"
self.is_conv2d_3x3 = self.is_conv2d and org_module.kernel_size == (3, 3)
if self.is_conv2d and self.is_conv2d_3x3:
kernel_size = org_module.kernel_size
self.stride = org_module.stride
self.padding = org_module.padding
self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim, *kernel_size)) for _ in range(self.lora_dim)])
self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1, 1, 1)) for _ in range(self.lora_dim)])
else:
self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim)) for _ in range(self.lora_dim)])
self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1)) for _ in range(self.lora_dim)])
# same as microsoft's
for lora in self.lora_A:
torch.nn.init.kaiming_uniform_(lora, a=math.sqrt(5))
for lora in self.lora_B:
torch.nn.init.zeros_(lora)
self.multiplier = multiplier
self.org_module = org_module # remove in applying
def apply_to(self):
self.org_forward = self.org_module.forward
self.org_module.forward = self.forward
del self.org_module
def forward(self, x):
result = self.org_forward(x)
# specify the dynamic rank
trainable_rank = random.randint(0, self.lora_dim - 1)
trainable_rank = trainable_rank - trainable_rank % self.unit # make sure the rank is a multiple of unit
# 一部のパラメータを固定して、残りのパラメータを学習する
for i in range(0, trainable_rank):
self.lora_A[i].requires_grad = False
self.lora_B[i].requires_grad = False
for i in range(trainable_rank, trainable_rank + self.unit):
self.lora_A[i].requires_grad = True
self.lora_B[i].requires_grad = True
for i in range(trainable_rank + self.unit, self.lora_dim):
self.lora_A[i].requires_grad = False
self.lora_B[i].requires_grad = False
lora_A = torch.cat(tuple(self.lora_A), dim=0)
lora_B = torch.cat(tuple(self.lora_B), dim=1)
# calculate with lora_A and lora_B
if self.is_conv2d_3x3:
ab = torch.nn.functional.conv2d(x, lora_A, stride=self.stride, padding=self.padding)
ab = torch.nn.functional.conv2d(ab, lora_B)
else:
ab = x
if self.is_conv2d:
ab = ab.reshape(ab.size(0), ab.size(1), -1).transpose(1, 2) # (N, C, H, W) -> (N, H*W, C)
ab = torch.nn.functional.linear(ab, lora_A)
ab = torch.nn.functional.linear(ab, lora_B)
if self.is_conv2d:
ab = ab.transpose(1, 2).reshape(ab.size(0), -1, *x.size()[2:]) # (N, H*W, C) -> (N, C, H, W)
# 最後の項は、低rankをより大きくするためのスケーリング(じゃないかな)
result = result + ab * self.scale * math.sqrt(self.lora_dim / (trainable_rank + self.unit))
# NOTE weightに加算してからlinear/conv2dを呼んだほうが速いかも
return result
def state_dict(self, destination=None, prefix="", keep_vars=False):
# state dictを通常のLoRAと同じにする:
# nn.ParameterListは `.lora_A.0` みたいな名前になるので、forwardと同様にcatして入れ替える
sd = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
lora_A_weight = torch.cat(tuple(self.lora_A), dim=0)
if self.is_conv2d and not self.is_conv2d_3x3:
lora_A_weight = lora_A_weight.unsqueeze(-1).unsqueeze(-1)
lora_B_weight = torch.cat(tuple(self.lora_B), dim=1)
if self.is_conv2d and not self.is_conv2d_3x3:
lora_B_weight = lora_B_weight.unsqueeze(-1).unsqueeze(-1)
sd[self.lora_name + ".lora_down.weight"] = lora_A_weight if keep_vars else lora_A_weight.detach()
sd[self.lora_name + ".lora_up.weight"] = lora_B_weight if keep_vars else lora_B_weight.detach()
i = 0
while True:
key_a = f"{self.lora_name}.lora_A.{i}"
key_b = f"{self.lora_name}.lora_B.{i}"
if key_a in sd:
sd.pop(key_a)
sd.pop(key_b)
else:
break
i += 1
return sd
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
# 通常のLoRAと同じstate dictを読み込めるようにする:この方法はchatGPTに聞いた
lora_A_weight = state_dict.pop(self.lora_name + ".lora_down.weight", None)
lora_B_weight = state_dict.pop(self.lora_name + ".lora_up.weight", None)
if lora_A_weight is None or lora_B_weight is None:
if strict:
raise KeyError(f"{self.lora_name}.lora_down/up.weight is not found")
else:
return
if self.is_conv2d and not self.is_conv2d_3x3:
lora_A_weight = lora_A_weight.squeeze(-1).squeeze(-1)
lora_B_weight = lora_B_weight.squeeze(-1).squeeze(-1)
state_dict.update(
{f"{self.lora_name}.lora_A.{i}": nn.Parameter(lora_A_weight[i].unsqueeze(0)) for i in range(lora_A_weight.size(0))}
)
state_dict.update(
{f"{self.lora_name}.lora_B.{i}": nn.Parameter(lora_B_weight[:, i].unsqueeze(1)) for i in range(lora_B_weight.size(1))}
)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
def create_network(multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None:
network_alpha = 1.0
# extract dim/alpha for conv2d, and block dim
conv_dim = kwargs.get("conv_dim", None)
conv_alpha = kwargs.get("conv_alpha", None)
unit = kwargs.get("unit", None)
if conv_dim is not None:
conv_dim = int(conv_dim)
assert conv_dim == network_dim, "conv_dim must be same as network_dim"
if conv_alpha is None:
conv_alpha = 1.0
else:
conv_alpha = float(conv_alpha)
if unit is not None:
unit = int(unit)
else:
unit = 1
network = DyLoRANetwork(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
alpha=network_alpha,
apply_to_conv=conv_dim is not None,
unit=unit,
varbose=True,
)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
modules_dim = {}
modules_alpha = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if "alpha" in key:
modules_alpha[lora_name] = value
elif "lora_down" in key:
dim = value.size()[0]
modules_dim[lora_name] = dim
# print(lora_name, value.size(), dim)
# support old LoRA without alpha
for key in modules_dim.keys():
if key not in modules_alpha:
modules_alpha = modules_dim[key]
module_class = DyLoRAModule
network = DyLoRANetwork(
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
)
return network, weights_sd
class DyLoRANetwork(torch.nn.Module):
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
def __init__(
self,
text_encoder,
unet,
multiplier=1.0,
lora_dim=4,
alpha=1,
apply_to_conv=False,
modules_dim=None,
modules_alpha=None,
unit=1,
module_class=DyLoRAModule,
varbose=False,
) -> None:
super().__init__()
self.multiplier = multiplier
self.lora_dim = lora_dim
self.alpha = alpha
self.apply_to_conv = apply_to_conv
if modules_dim is not None:
print(f"create LoRA network from weights")
else:
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}, unit: {unit}")
if self.apply_to_conv:
print(f"apply LoRA to Conv2d with kernel size (3,3).")
# create module instances
def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules) -> List[DyLoRAModule]:
prefix = DyLoRANetwork.LORA_PREFIX_UNET if is_unet else DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER
loras = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ == "Linear"
is_conv2d = child_module.__class__.__name__ == "Conv2d"
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
if is_linear or is_conv2d:
lora_name = prefix + "." + name + "." + child_name
lora_name = lora_name.replace(".", "_")
dim = None
alpha = None
if modules_dim is not None:
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
else:
if is_linear or is_conv2d_1x1 or apply_to_conv:
dim = self.lora_dim
alpha = self.alpha
if dim is None or dim == 0:
continue
# dropout and fan_in_fan_out is default
lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit)
loras.append(lora)
return loras
self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
target_modules = DyLoRANetwork.UNET_TARGET_REPLACE_MODULE
if modules_dim is not None or self.apply_to_conv:
target_modules += DyLoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
self.unet_loras = create_modules(True, unet, target_modules)
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.text_encoder_loras + self.unet_loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
"""
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(DyLoRANetwork.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
print("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
print("enable LoRA for U-Net")
else:
self.unet_loras = []
for lora in self.text_encoder_loras + self.unet_loras:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(lora.lora_name):
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
lora.merge_to(sd_for_lora, dtype, device)
print(f"weights are merged")
"""
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
# mask is a tensor with values from 0 to 1
def set_region(self, sub_prompt_index, is_last_network, mask):
pass
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
pass