DiffusionModel / library /sdxl_model_util.py
thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
import torch
from safetensors.torch import load_file, save_file
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTextModelWithProjection
from diffusers import AutoencoderKL
from library import model_util
from library import sdxl_original_unet
VAE_SCALE_FACTOR = 0.13025
MODEL_VERSION_SDXL_BASE_V0_9 = "sdxl_base_v0-9"
def convert_sdxl_text_encoder_2_checkpoint(checkpoint, max_length):
SDXL_KEY_PREFIX = "conditioner.embedders.1.model."
# SD2のと、基本的には同じ。logit_scaleを後で使うので、それを追加で返す
# logit_scaleはcheckpointの保存時に使用する
def convert_key(key):
# common conversion
key = key.replace(SDXL_KEY_PREFIX + "transformer.", "text_model.encoder.")
key = key.replace(SDXL_KEY_PREFIX, "text_model.")
if "resblocks" in key:
# resblocks conversion
key = key.replace(".resblocks.", ".layers.")
if ".ln_" in key:
key = key.replace(".ln_", ".layer_norm")
elif ".mlp." in key:
key = key.replace(".c_fc.", ".fc1.")
key = key.replace(".c_proj.", ".fc2.")
elif ".attn.out_proj" in key:
key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
elif ".attn.in_proj" in key:
key = None # 特殊なので後で処理する
else:
raise ValueError(f"unexpected key in SD: {key}")
elif ".positional_embedding" in key:
key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
elif ".text_projection" in key:
key = key.replace("text_model.text_projection", "text_projection.weight")
elif ".logit_scale" in key:
key = None # 後で処理する
elif ".token_embedding" in key:
key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
elif ".ln_final" in key:
key = key.replace(".ln_final", ".final_layer_norm")
# ckpt from comfy has this key: text_model.encoder.text_model.embeddings.position_ids
elif ".embeddings.position_ids" in key:
key = None # remove this key: make position_ids by ourselves
return key
keys = list(checkpoint.keys())
new_sd = {}
for key in keys:
new_key = convert_key(key)
if new_key is None:
continue
new_sd[new_key] = checkpoint[key]
# attnの変換
for key in keys:
if ".resblocks" in key and ".attn.in_proj_" in key:
# 三つに分割
values = torch.chunk(checkpoint[key], 3)
key_suffix = ".weight" if "weight" in key else ".bias"
key_pfx = key.replace(SDXL_KEY_PREFIX + "transformer.resblocks.", "text_model.encoder.layers.")
key_pfx = key_pfx.replace("_weight", "")
key_pfx = key_pfx.replace("_bias", "")
key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
new_sd[key_pfx + "v_proj" + key_suffix] = values[2]
# original SD にはないので、position_idsを追加
position_ids = torch.Tensor([list(range(max_length))]).to(torch.int64)
new_sd["text_model.embeddings.position_ids"] = position_ids
# logit_scale はDiffusersには含まれないが、保存時に戻したいので別途返す
logit_scale = checkpoint.get(SDXL_KEY_PREFIX + "logit_scale", None)
return new_sd, logit_scale
def load_models_from_sdxl_checkpoint(model_version, ckpt_path, map_location):
# model_version is reserved for future use
# Load the state dict
if model_util.is_safetensors(ckpt_path):
checkpoint = None
state_dict = load_file(ckpt_path, device=map_location)
epoch = None
global_step = None
else:
checkpoint = torch.load(ckpt_path, map_location=map_location)
if "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
epoch = checkpoint.get("epoch", 0)
global_step = checkpoint.get("global_step", 0)
else:
state_dict = checkpoint
epoch = 0
global_step = 0
checkpoint = None
# U-Net
print("building U-Net")
unet = sdxl_original_unet.SdxlUNet2DConditionModel()
print("loading U-Net from checkpoint")
unet_sd = {}
for k in list(state_dict.keys()):
if k.startswith("model.diffusion_model."):
unet_sd[k.replace("model.diffusion_model.", "")] = state_dict.pop(k)
info = unet.load_state_dict(unet_sd)
print("U-Net: ", info)
del unet_sd
# Text Encoders
print("building text encoders")
# Text Encoder 1 is same to SDXL
text_model1_cfg = CLIPTextConfig(
vocab_size=49408,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=768,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
text_model1 = CLIPTextModel._from_config(text_model1_cfg)
# Text Encoder 2 is different from SDXL. SDXL uses open clip, but we use the model from HuggingFace.
# Note: Tokenizer from HuggingFace is different from SDXL. We must use open clip's tokenizer.
text_model2_cfg = CLIPTextConfig(
vocab_size=49408,
hidden_size=1280,
intermediate_size=5120,
num_hidden_layers=32,
num_attention_heads=20,
max_position_embeddings=77,
hidden_act="gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=1280,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
text_model2 = CLIPTextModelWithProjection(text_model2_cfg)
print("loading text encoders from checkpoint")
te1_sd = {}
te2_sd = {}
for k in list(state_dict.keys()):
if k.startswith("conditioner.embedders.0.transformer."):
te1_sd[k.replace("conditioner.embedders.0.transformer.", "")] = state_dict.pop(k)
elif k.startswith("conditioner.embedders.1.model."):
te2_sd[k] = state_dict.pop(k)
info1 = text_model1.load_state_dict(te1_sd)
print("text encoder 1:", info1)
converted_sd, logit_scale = convert_sdxl_text_encoder_2_checkpoint(te2_sd, max_length=77)
info2 = text_model2.load_state_dict(converted_sd)
print("text encoder 2:", info2)
# prepare vae
print("building VAE")
vae_config = model_util.create_vae_diffusers_config()
vae = AutoencoderKL(**vae_config) # .to(device)
print("loading VAE from checkpoint")
converted_vae_checkpoint = model_util.convert_ldm_vae_checkpoint(state_dict, vae_config)
info = vae.load_state_dict(converted_vae_checkpoint)
print("VAE:", info)
ckpt_info = (epoch, global_step) if epoch is not None else None
return text_model1, text_model2, vae, unet, logit_scale, ckpt_info
def convert_text_encoder_2_state_dict_to_sdxl(checkpoint, logit_scale):
def convert_key(key):
# position_idsの除去
if ".position_ids" in key:
return None
# common
key = key.replace("text_model.encoder.", "transformer.")
key = key.replace("text_model.", "")
if "layers" in key:
# resblocks conversion
key = key.replace(".layers.", ".resblocks.")
if ".layer_norm" in key:
key = key.replace(".layer_norm", ".ln_")
elif ".mlp." in key:
key = key.replace(".fc1.", ".c_fc.")
key = key.replace(".fc2.", ".c_proj.")
elif ".self_attn.out_proj" in key:
key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
elif ".self_attn." in key:
key = None # 特殊なので後で処理する
else:
raise ValueError(f"unexpected key in DiffUsers model: {key}")
elif ".position_embedding" in key:
key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
elif ".token_embedding" in key:
key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
elif "text_projection" in key: # no dot in key
key = key.replace("text_projection.weight", "text_projection")
elif "final_layer_norm" in key:
key = key.replace("final_layer_norm", "ln_final")
return key
keys = list(checkpoint.keys())
new_sd = {}
for key in keys:
new_key = convert_key(key)
if new_key is None:
continue
new_sd[new_key] = checkpoint[key]
# attnの変換
for key in keys:
if "layers" in key and "q_proj" in key:
# 三つを結合
key_q = key
key_k = key.replace("q_proj", "k_proj")
key_v = key.replace("q_proj", "v_proj")
value_q = checkpoint[key_q]
value_k = checkpoint[key_k]
value_v = checkpoint[key_v]
value = torch.cat([value_q, value_k, value_v])
new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
new_sd[new_key] = value
if logit_scale is not None:
new_sd["logit_scale"] = logit_scale
return new_sd
def save_stable_diffusion_checkpoint(
output_file,
text_encoder1,
text_encoder2,
unet,
epochs,
steps,
ckpt_info,
vae,
logit_scale,
save_dtype=None,
):
state_dict = {}
def update_sd(prefix, sd):
for k, v in sd.items():
key = prefix + k
if save_dtype is not None:
v = v.detach().clone().to("cpu").to(save_dtype)
state_dict[key] = v
# Convert the UNet model
update_sd("model.diffusion_model.", unet.state_dict())
# Convert the text encoders
update_sd("conditioner.embedders.0.transformer.", text_encoder1.state_dict())
text_enc2_dict = convert_text_encoder_2_state_dict_to_sdxl(text_encoder2.state_dict(), logit_scale)
update_sd("conditioner.embedders.1.model.", text_enc2_dict)
# Convert the VAE
vae_dict = model_util.convert_vae_state_dict(vae.state_dict())
update_sd("first_stage_model.", vae_dict)
# Put together new checkpoint
key_count = len(state_dict.keys())
new_ckpt = {"state_dict": state_dict}
# epoch and global_step are sometimes not int
if ckpt_info is not None:
epochs += ckpt_info[0]
steps += ckpt_info[1]
new_ckpt["epoch"] = epochs
new_ckpt["global_step"] = steps
if model_util.is_safetensors(output_file):
save_file(state_dict, output_file)
else:
torch.save(new_ckpt, output_file)
return key_count