DiffusionModel / library /blip_caption_gui.py
thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import get_folder_path, add_pre_postfix
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
def caption_images(
train_data_dir,
caption_file_ext,
batch_size,
num_beams,
top_p,
max_length,
min_length,
beam_search,
prefix,
postfix,
):
# Check if the image folder is provided
if train_data_dir == '':
msgbox('Image folder is missing...')
return
# Check if the caption file extension is provided
if caption_file_ext == '':
msgbox('Please provide an extension for the caption files.')
return
log.info(f'Captioning files in {train_data_dir}...')
# Construct the command to run
run_cmd = f'{PYTHON} "finetune/make_captions.py"'
run_cmd += f' --batch_size="{int(batch_size)}"'
run_cmd += f' --num_beams="{int(num_beams)}"'
run_cmd += f' --top_p="{top_p}"'
run_cmd += f' --max_length="{int(max_length)}"'
run_cmd += f' --min_length="{int(min_length)}"'
if beam_search:
run_cmd += f' --beam_search'
if caption_file_ext != '':
run_cmd += f' --caption_extension="{caption_file_ext}"'
run_cmd += f' "{train_data_dir}"'
run_cmd += f' --caption_weights="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth"'
log.info(run_cmd)
# Run the command
if os.name == 'posix':
os.system(run_cmd)
else:
subprocess.run(run_cmd)
# Add prefix and postfix
add_pre_postfix(
folder=train_data_dir,
caption_file_ext=caption_file_ext,
prefix=prefix,
postfix=postfix,
)
log.info('...captioning done')
###
# Gradio UI
###
def gradio_blip_caption_gui_tab(headless=False):
with gr.Tab('BLIP Captioning'):
gr.Markdown(
'This utility uses BLIP to caption files for each image in a folder.'
)
with gr.Row():
train_data_dir = gr.Textbox(
label='Image folder to caption',
placeholder='Directory containing the images to caption',
interactive=True,
)
button_train_data_dir_input = gr.Button(
'πŸ“‚', elem_id='open_folder_small', visible=(not headless)
)
button_train_data_dir_input.click(
get_folder_path,
outputs=train_data_dir,
show_progress=False,
)
with gr.Row():
caption_file_ext = gr.Textbox(
label='Caption file extension',
placeholder='Extension for caption file, e.g., .caption, .txt',
value='.txt',
interactive=True,
)
prefix = gr.Textbox(
label='Prefix to add to BLIP caption',
placeholder='(Optional)',
interactive=True,
)
postfix = gr.Textbox(
label='Postfix to add to BLIP caption',
placeholder='(Optional)',
interactive=True,
)
batch_size = gr.Number(
value=1, label='Batch size', interactive=True
)
with gr.Row():
beam_search = gr.Checkbox(
label='Use beam search', interactive=True, value=True
)
num_beams = gr.Number(
value=1, label='Number of beams', interactive=True
)
top_p = gr.Number(value=0.9, label='Top p', interactive=True)
max_length = gr.Number(
value=75, label='Max length', interactive=True
)
min_length = gr.Number(
value=5, label='Min length', interactive=True
)
caption_button = gr.Button('Caption images')
caption_button.click(
caption_images,
inputs=[
train_data_dir,
caption_file_ext,
batch_size,
num_beams,
top_p,
max_length,
min_length,
beam_search,
prefix,
postfix,
],
show_progress=False,
)