DiffusionModel / kohya_gui.py
thorfinn0330's picture
Upload folder using huggingface_hub
11c2c17 verified
import gradio as gr
import os
import argparse
from dreambooth_gui import dreambooth_tab
from finetune_gui import finetune_tab
from textual_inversion_gui import ti_tab
from library.utilities import utilities_tab
from lora_gui import lora_tab
from library.class_lora_tab import LoRATools
import os
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
def UI(**kwargs):
css = ''
headless = kwargs.get('headless', False)
log.info(f'headless: {headless}')
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
log.info('Load CSS...')
css += file.read() + '\n'
if os.path.exists('./.release'):
with open(os.path.join('./.release'), 'r', encoding='utf8') as file:
release = file.read()
if os.path.exists('./README.md'):
with open(os.path.join('./README.md'), 'r', encoding='utf8') as file:
README = file.read()
interface = gr.Blocks(
css=css, title=f'Kohya_ss GUI {release}', theme=gr.themes.Default()
)
with interface:
with gr.Tab('Dreambooth'):
(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
) = dreambooth_tab(headless=headless)
with gr.Tab('LoRA'):
lora_tab(headless=headless)
with gr.Tab('Textual Inversion'):
ti_tab(headless=headless)
with gr.Tab('Finetuning'):
finetune_tab(headless=headless)
with gr.Tab('Utilities'):
utilities_tab(
train_data_dir_input=train_data_dir_input,
reg_data_dir_input=reg_data_dir_input,
output_dir_input=output_dir_input,
logging_dir_input=logging_dir_input,
enable_copy_info_button=True,
headless=headless,
)
with gr.Tab('LoRA'):
_ = LoRATools(headless=headless)
with gr.Tab('About'):
gr.Markdown(f'kohya_ss GUI release {release}')
with gr.Tab('README'):
gr.Markdown(README)
htmlStr = f"""
<html>
<body>
<div class="ver-class">{release}</div>
</body>
</html>
"""
gr.HTML(htmlStr)
# Show the interface
launch_kwargs = {}
username = kwargs.get('username')
password = kwargs.get('password')
server_port = kwargs.get('server_port', 0)
inbrowser = kwargs.get('inbrowser', False)
share = kwargs.get('share', False)
server_name = kwargs.get('listen')
launch_kwargs['server_name'] = server_name
if username and password:
launch_kwargs['auth'] = (username, password)
if server_port > 0:
launch_kwargs['server_port'] = server_port
if inbrowser:
launch_kwargs['inbrowser'] = inbrowser
if share:
launch_kwargs['share'] = share
interface.launch(**launch_kwargs)
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
parser.add_argument(
'--headless', action='store_true', help='Is the server headless'
)
args = parser.parse_args()
UI(
username=args.username,
password=args.password,
inbrowser=args.inbrowser,
server_port=args.server_port,
share=args.share,
listen=args.listen,
headless=args.headless,
)