Spaces:
Build error
Build error
File size: 109,863 Bytes
11c2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 |
import itertools
import json
from typing import Any, List, NamedTuple, Optional, Tuple, Union, Callable
import glob
import importlib
import inspect
import time
import zipfile
from diffusers.utils import deprecate
from diffusers.configuration_utils import FrozenDict
import argparse
import math
import os
import random
import re
import diffusers
import numpy as np
import torch
import torchvision
from diffusers import (
AutoencoderKL,
DDPMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
# UNet2DConditionModel,
StableDiffusionPipeline,
)
from einops import rearrange
from tqdm import tqdm
from torchvision import transforms
from transformers import CLIPTextModel, CLIPTokenizer, CLIPModel, CLIPTextConfig
import PIL
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import library.model_util as model_util
import library.train_util as train_util
import library.sdxl_model_util as sdxl_model_util
import library.sdxl_train_util as sdxl_train_util
from networks.lora import LoRANetwork
import tools.original_control_net as original_control_net
from tools.original_control_net import ControlNetInfo
from library.sdxl_original_unet import SdxlUNet2DConditionModel
from library.original_unet import FlashAttentionFunction
# scheduler:
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
# その他の設定
LATENT_CHANNELS = 4
DOWNSAMPLING_FACTOR = 8
# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""
def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers, sdpa):
if mem_eff_attn:
print("Enable memory efficient attention for U-Net")
# これはDiffusersのU-Netではなく自前のU-Netなので置き換えなくても良い
unet.set_use_memory_efficient_attention(False, True)
elif xformers:
print("Enable xformers for U-Net")
try:
import xformers.ops
except ImportError:
raise ImportError("No xformers / xformersがインストールされていないようです")
unet.set_use_memory_efficient_attention(True, False)
elif sdpa:
print("Enable SDPA for U-Net")
unet.set_use_memory_efficient_attention(False, False)
unet.set_use_sdpa(True)
# TODO common train_util.py
def replace_vae_modules(vae: diffusers.models.AutoencoderKL, mem_eff_attn, xformers, sdpa):
if mem_eff_attn:
replace_vae_attn_to_memory_efficient()
elif xformers:
replace_vae_attn_to_xformers()
elif sdpa:
replace_vae_attn_to_sdpa()
def replace_vae_attn_to_memory_efficient():
print("VAE Attention.forward has been replaced to FlashAttention (not xformers)")
flash_func = FlashAttentionFunction
def forward_flash_attn(self, hidden_states, **kwargs):
q_bucket_size = 512
k_bucket_size = 1024
residual = hidden_states
batch, channel, height, width = hidden_states.shape
# norm
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
# proj to q, k, v
query_proj = self.to_q(hidden_states)
key_proj = self.to_k(hidden_states)
value_proj = self.to_v(hidden_states)
query_proj, key_proj, value_proj = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), (query_proj, key_proj, value_proj)
)
out = flash_func.apply(query_proj, key_proj, value_proj, None, False, q_bucket_size, k_bucket_size)
out = rearrange(out, "b h n d -> b n (h d)")
# compute next hidden_states
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
# res connect and rescale
hidden_states = (hidden_states + residual) / self.rescale_output_factor
return hidden_states
def forward_flash_attn_0_14(self, hidden_states, **kwargs):
if not hasattr(self, "to_q"):
self.to_q = self.query
self.to_k = self.key
self.to_v = self.value
self.to_out = [self.proj_attn, torch.nn.Identity()]
self.heads = self.num_heads
return forward_flash_attn(self, hidden_states, **kwargs)
if diffusers.__version__ < "0.15.0":
diffusers.models.attention.AttentionBlock.forward = forward_flash_attn_0_14
else:
diffusers.models.attention_processor.Attention.forward = forward_flash_attn
def replace_vae_attn_to_xformers():
print("VAE: Attention.forward has been replaced to xformers")
import xformers.ops
def forward_xformers(self, hidden_states, **kwargs):
residual = hidden_states
batch, channel, height, width = hidden_states.shape
# norm
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
# proj to q, k, v
query_proj = self.to_q(hidden_states)
key_proj = self.to_k(hidden_states)
value_proj = self.to_v(hidden_states)
query_proj, key_proj, value_proj = map(
lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), (query_proj, key_proj, value_proj)
)
query_proj = query_proj.contiguous()
key_proj = key_proj.contiguous()
value_proj = value_proj.contiguous()
out = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
out = rearrange(out, "b h n d -> b n (h d)")
# compute next hidden_states
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
# res connect and rescale
hidden_states = (hidden_states + residual) / self.rescale_output_factor
return hidden_states
def forward_xformers_0_14(self, hidden_states, **kwargs):
if not hasattr(self, "to_q"):
self.to_q = self.query
self.to_k = self.key
self.to_v = self.value
self.to_out = [self.proj_attn, torch.nn.Identity()]
self.heads = self.num_heads
return forward_xformers(self, hidden_states, **kwargs)
if diffusers.__version__ < "0.15.0":
diffusers.models.attention.AttentionBlock.forward = forward_xformers_0_14
else:
diffusers.models.attention_processor.Attention.forward = forward_xformers
def replace_vae_attn_to_sdpa():
print("VAE: Attention.forward has been replaced to sdpa")
def forward_sdpa(self, hidden_states, **kwargs):
residual = hidden_states
batch, channel, height, width = hidden_states.shape
# norm
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
# proj to q, k, v
query_proj = self.to_q(hidden_states)
key_proj = self.to_k(hidden_states)
value_proj = self.to_v(hidden_states)
query_proj, key_proj, value_proj = map(
lambda t: rearrange(t, "b n (h d) -> b n h d", h=self.heads), (query_proj, key_proj, value_proj)
)
out = torch.nn.functional.scaled_dot_product_attention(
query_proj, key_proj, value_proj, attn_mask=None, dropout_p=0.0, is_causal=False
)
out = rearrange(out, "b n h d -> b n (h d)")
# compute next hidden_states
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
# res connect and rescale
hidden_states = (hidden_states + residual) / self.rescale_output_factor
return hidden_states
def forward_sdpa_0_14(self, hidden_states, **kwargs):
if not hasattr(self, "to_q"):
self.to_q = self.query
self.to_k = self.key
self.to_v = self.value
self.to_out = [self.proj_attn, torch.nn.Identity()]
self.heads = self.num_heads
return forward_sdpa(self, hidden_states, **kwargs)
if diffusers.__version__ < "0.15.0":
diffusers.models.attention.AttentionBlock.forward = forward_sdpa_0_14
else:
diffusers.models.attention_processor.Attention.forward = forward_sdpa
# endregion
# region 画像生成の本体:lpw_stable_diffusion.py (ASL)からコピーして修正
# https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion.py
# Pipelineだけ独立して使えないのと機能追加するのとでコピーして修正
class PipelineLike:
def __init__(
self,
device,
vae: AutoencoderKL,
text_encoders: List[CLIPTextModel],
tokenizers: List[CLIPTokenizer],
unet: SdxlUNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
clip_skip: int,
):
super().__init__()
self.device = device
self.clip_skip = clip_skip
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
self.vae = vae
self.text_encoders = text_encoders
self.tokenizers = tokenizers
self.unet: SdxlUNet2DConditionModel = unet
self.scheduler = scheduler
self.safety_checker = None
# Textual Inversion
self.token_replacements_list = []
for _ in range(len(self.text_encoders)):
self.token_replacements_list.append({})
# ControlNet # not supported yet
self.control_nets: List[ControlNetInfo] = []
self.control_net_enabled = True # control_netsが空ならTrueでもFalseでもControlNetは動作しない
# Textual Inversion
def add_token_replacement(self, text_encoder_index, target_token_id, rep_token_ids):
self.token_replacements_list[text_encoder_index][target_token_id] = rep_token_ids
def set_enable_control_net(self, en: bool):
self.control_net_enabled = en
def get_token_replacer(self, tokenizer):
tokenizer_index = self.tokenizers.index(tokenizer)
token_replacements = self.token_replacements_list[tokenizer_index]
def replace_tokens(tokens):
# print("replace_tokens", tokens, "=>", token_replacements)
if isinstance(tokens, torch.Tensor):
tokens = tokens.tolist()
new_tokens = []
for token in tokens:
if token in token_replacements:
replacement = token_replacements[token]
new_tokens.extend(replacement)
else:
new_tokens.append(token)
return new_tokens
return replace_tokens
def set_control_nets(self, ctrl_nets):
self.control_nets = ctrl_nets
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
init_image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
height: int = 1024,
width: int = 1024,
original_height: int = None,
original_width: int = None,
crop_top: int = 0,
crop_left: int = 0,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_scale: float = None,
strength: float = 0.8,
# num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
max_embeddings_multiples: Optional[int] = 3,
output_type: Optional[str] = "pil",
vae_batch_size: float = None,
return_latents: bool = False,
# return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
is_cancelled_callback: Optional[Callable[[], bool]] = None,
callback_steps: Optional[int] = 1,
img2img_noise=None,
**kwargs,
):
# TODO support secondary prompt
num_images_per_prompt = 1 # fixed because already prompt is repeated
if isinstance(prompt, str):
batch_size = 1
prompt = [prompt]
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
reginonal_network = " AND " in prompt[0]
vae_batch_size = (
batch_size
if vae_batch_size is None
else (int(vae_batch_size) if vae_batch_size >= 1 else max(1, int(batch_size * vae_batch_size)))
)
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}."
)
# get prompt text embeddings
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if not do_classifier_free_guidance and negative_scale is not None:
print(f"negative_scale is ignored if guidance scalle <= 1.0")
negative_scale = None
# get unconditional embeddings for classifier free guidance
if negative_prompt is None:
negative_prompt = [""] * batch_size
elif isinstance(negative_prompt, str):
negative_prompt = [negative_prompt] * batch_size
if batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
tes_text_embs = []
tes_uncond_embs = []
tes_real_uncond_embs = []
# use last pool
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
token_replacer = self.get_token_replacer(tokenizer)
text_embeddings, text_pool, uncond_embeddings, uncond_pool, _ = get_weighted_text_embeddings(
tokenizer,
text_encoder,
prompt=prompt,
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
max_embeddings_multiples=max_embeddings_multiples,
clip_skip=self.clip_skip,
token_replacer=token_replacer,
device=self.device,
**kwargs,
)
tes_text_embs.append(text_embeddings)
tes_uncond_embs.append(uncond_embeddings)
if negative_scale is not None:
_, real_uncond_embeddings, _ = get_weighted_text_embeddings(
token_replacer,
prompt=prompt, # こちらのトークン長に合わせてuncondを作るので75トークン超で必須
uncond_prompt=[""] * batch_size,
max_embeddings_multiples=max_embeddings_multiples,
clip_skip=self.clip_skip,
token_replacer=token_replacer,
device=self.device,
**kwargs,
)
tes_real_uncond_embs.append(real_uncond_embeddings)
# concat text encoder outputs
text_embeddings = tes_text_embs[0]
uncond_embeddings = tes_uncond_embs[0]
for i in range(1, len(tes_text_embs)):
text_embeddings = torch.cat([text_embeddings, tes_text_embs[i]], dim=2) # n,77,2048
uncond_embeddings = torch.cat([uncond_embeddings, tes_uncond_embs[i]], dim=2) # n,77,2048
if do_classifier_free_guidance:
if negative_scale is None:
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
else:
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, real_uncond_embeddings])
if self.control_nets:
if isinstance(clip_guide_images, PIL.Image.Image):
clip_guide_images = [clip_guide_images]
# ControlNetのhintにguide imageを流用する
# 前処理はControlNet側で行う
# create size embs
if original_height is None:
original_height = height
if original_width is None:
original_width = width
if crop_top is None:
crop_top = 0
if crop_left is None:
crop_left = 0
emb1 = sdxl_train_util.get_timestep_embedding(torch.FloatTensor([original_height, original_width]).unsqueeze(0), 256)
emb2 = sdxl_train_util.get_timestep_embedding(torch.FloatTensor([crop_top, crop_left]).unsqueeze(0), 256)
emb3 = sdxl_train_util.get_timestep_embedding(torch.FloatTensor([height, width]).unsqueeze(0), 256)
c_vector = torch.cat([emb1, emb2, emb3], dim=1).to(self.device, dtype=text_embeddings.dtype)
uc_vector = c_vector.clone().to(self.device, dtype=text_embeddings.dtype)
c_vector = torch.cat([text_pool, c_vector], dim=1)
uc_vector = torch.cat([uncond_pool, uc_vector], dim=1)
vector_embeddings = torch.cat([uc_vector, c_vector])
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, self.device)
latents_dtype = text_embeddings.dtype
init_latents_orig = None
mask = None
if init_image is None:
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (
batch_size * num_images_per_prompt,
self.unet.in_channels,
height // 8,
width // 8,
)
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
latents = torch.randn(
latents_shape,
generator=generator,
device="cpu",
dtype=latents_dtype,
).to(self.device)
else:
latents = torch.randn(
latents_shape,
generator=generator,
device=self.device,
dtype=latents_dtype,
)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
timesteps = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
else:
# image to tensor
if isinstance(init_image, PIL.Image.Image):
init_image = [init_image]
if isinstance(init_image[0], PIL.Image.Image):
init_image = [preprocess_image(im) for im in init_image]
init_image = torch.cat(init_image)
if isinstance(init_image, list):
init_image = torch.stack(init_image)
# mask image to tensor
if mask_image is not None:
if isinstance(mask_image, PIL.Image.Image):
mask_image = [mask_image]
if isinstance(mask_image[0], PIL.Image.Image):
mask_image = torch.cat([preprocess_mask(im) for im in mask_image]) # H*W, 0 for repaint
# encode the init image into latents and scale the latents
init_image = init_image.to(device=self.device, dtype=latents_dtype)
if init_image.size()[-2:] == (height // 8, width // 8):
init_latents = init_image
else:
if vae_batch_size >= batch_size:
init_latent_dist = self.vae.encode(init_image.to(self.vae.dtype)).latent_dist
init_latents = init_latent_dist.sample(generator=generator)
else:
if torch.cuda.is_available():
torch.cuda.empty_cache()
init_latents = []
for i in tqdm(range(0, min(batch_size, len(init_image)), vae_batch_size)):
init_latent_dist = self.vae.encode(
(init_image[i : i + vae_batch_size] if vae_batch_size > 1 else init_image[i].unsqueeze(0)).to(
self.vae.dtype
)
).latent_dist
init_latents.append(init_latent_dist.sample(generator=generator))
init_latents = torch.cat(init_latents)
init_latents = sdxl_model_util.VAE_SCALE_FACTOR * init_latents
if len(init_latents) == 1:
init_latents = init_latents.repeat((batch_size, 1, 1, 1))
init_latents_orig = init_latents
# preprocess mask
if mask_image is not None:
mask = mask_image.to(device=self.device, dtype=latents_dtype)
if len(mask) == 1:
mask = mask.repeat((batch_size, 1, 1, 1))
# check sizes
if not mask.shape == init_latents.shape:
raise ValueError("The mask and init_image should be the same size!")
# get the original timestep using init_timestep
offset = self.scheduler.config.get("steps_offset", 0)
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
timesteps = self.scheduler.timesteps[-init_timestep]
timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device)
# add noise to latents using the timesteps
latents = self.scheduler.add_noise(init_latents, img2img_noise, timesteps)
t_start = max(num_inference_steps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start:].to(self.device)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
num_latent_input = (3 if negative_scale is not None else 2) if do_classifier_free_guidance else 1
if self.control_nets:
guided_hints = original_control_net.get_guided_hints(self.control_nets, num_latent_input, batch_size, clip_guide_images)
for i, t in enumerate(tqdm(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = latents.repeat((num_latent_input, 1, 1, 1))
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
if self.control_nets and self.control_net_enabled:
if reginonal_network:
num_sub_and_neg_prompts = len(text_embeddings) // batch_size
text_emb_last = text_embeddings[num_sub_and_neg_prompts - 2 :: num_sub_and_neg_prompts] # last subprompt
else:
text_emb_last = text_embeddings
# not working yet
noise_pred = original_control_net.call_unet_and_control_net(
i,
num_latent_input,
self.unet,
self.control_nets,
guided_hints,
i / len(timesteps),
latent_model_input,
t,
text_emb_last,
).sample
else:
noise_pred = self.unet(latent_model_input, t, text_embeddings, vector_embeddings)
# perform guidance
if do_classifier_free_guidance:
if negative_scale is None:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_latent_input) # uncond by negative prompt
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred_negative, noise_pred_text, noise_pred_uncond = noise_pred.chunk(
num_latent_input
) # uncond is real uncond
noise_pred = (
noise_pred_uncond
+ guidance_scale * (noise_pred_text - noise_pred_uncond)
- negative_scale * (noise_pred_negative - noise_pred_uncond)
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if mask is not None:
# masking
init_latents_proper = self.scheduler.add_noise(init_latents_orig, img2img_noise, torch.tensor([t]))
latents = (init_latents_proper * mask) + (latents * (1 - mask))
# call the callback, if provided
if i % callback_steps == 0:
if callback is not None:
callback(i, t, latents)
if is_cancelled_callback is not None and is_cancelled_callback():
return None
if return_latents:
return (latents, False)
latents = 1 / sdxl_model_util.VAE_SCALE_FACTOR * latents
if vae_batch_size >= batch_size:
image = self.vae.decode(latents.to(self.vae.dtype)).sample
else:
if torch.cuda.is_available():
torch.cuda.empty_cache()
images = []
for i in tqdm(range(0, batch_size, vae_batch_size)):
images.append(
self.vae.decode(
(latents[i : i + vae_batch_size] if vae_batch_size > 1 else latents[i].unsqueeze(0)).to(self.vae.dtype)
).sample
)
image = torch.cat(images)
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if output_type == "pil":
# image = self.numpy_to_pil(image)
image = (image * 255).round().astype("uint8")
image = [Image.fromarray(im) for im in image]
return image
# return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
re_attention = re.compile(
r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
re.X,
)
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\( - literal character '('
\[ - literal character '['
\) - literal character ')'
\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\(literal\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
# keep break as separate token
text = text.replace("BREAK", "\\BREAK\\")
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
res.append([text, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1] and res[i][0].strip() != "BREAK" and res[i + 1][0].strip() != "BREAK":
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_with_weights(tokenizer: CLIPTokenizer, token_replacer, prompt: List[str], max_length: int):
r"""
Tokenize a list of prompts and return its tokens with weights of each token.
No padding, starting or ending token is included.
"""
tokens = []
weights = []
truncated = False
for text in prompt:
texts_and_weights = parse_prompt_attention(text)
text_token = []
text_weight = []
for word, weight in texts_and_weights:
if word.strip() == "BREAK":
# pad until next multiple of tokenizer's max token length
pad_len = tokenizer.model_max_length - (len(text_token) % tokenizer.model_max_length)
print(f"BREAK pad_len: {pad_len}")
for i in range(pad_len):
# v2のときEOSをつけるべきかどうかわからないぜ
# if i == 0:
# text_token.append(tokenizer.eos_token_id)
# else:
text_token.append(tokenizer.pad_token_id)
text_weight.append(1.0)
continue
# tokenize and discard the starting and the ending token
token = tokenizer(word).input_ids[1:-1]
token = token_replacer(token) # for Textual Inversion
text_token += token
# copy the weight by length of token
text_weight += [weight] * len(token)
# stop if the text is too long (longer than truncation limit)
if len(text_token) > max_length:
truncated = True
break
# truncate
if len(text_token) > max_length:
truncated = True
text_token = text_token[:max_length]
text_weight = text_weight[:max_length]
tokens.append(text_token)
weights.append(text_weight)
if truncated:
print("warning: Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
return tokens, weights
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
r"""
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
"""
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
for i in range(len(tokens)):
tokens[i] = [bos] + tokens[i] + [eos] + [pad] * (max_length - 2 - len(tokens[i]))
if no_boseos_middle:
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
else:
w = []
if len(weights[i]) == 0:
w = [1.0] * weights_length
else:
for j in range(max_embeddings_multiples):
w.append(1.0) # weight for starting token in this chunk
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
w.append(1.0) # weight for ending token in this chunk
w += [1.0] * (weights_length - len(w))
weights[i] = w[:]
return tokens, weights
def get_unweighted_text_embeddings(
text_encoder: CLIPTextModel,
text_input: torch.Tensor,
chunk_length: int,
clip_skip: int,
eos: int,
pad: int,
no_boseos_middle: Optional[bool] = True,
):
"""
When the length of tokens is a multiple of the capacity of the text encoder,
it should be split into chunks and sent to the text encoder individually.
"""
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
if max_embeddings_multiples > 1:
text_embeddings = []
pool = None
for i in range(max_embeddings_multiples):
# extract the i-th chunk
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
# cover the head and the tail by the starting and the ending tokens
text_input_chunk[:, 0] = text_input[0, 0]
if pad == eos: # v1
text_input_chunk[:, -1] = text_input[0, -1]
else: # v2
for j in range(len(text_input_chunk)):
if text_input_chunk[j, -1] != eos and text_input_chunk[j, -1] != pad: # 最後に普通の文字がある
text_input_chunk[j, -1] = eos
if text_input_chunk[j, 1] == pad: # BOSだけであとはPAD
text_input_chunk[j, 1] = eos
# -2 is same for Text Encoder 1 and 2
enc_out = text_encoder(text_input_chunk, output_hidden_states=True, return_dict=True)
text_embedding = enc_out["hidden_states"][-2]
if pool is None:
pool = enc_out["text_embeds"] # use 1st chunk
if no_boseos_middle:
if i == 0:
# discard the ending token
text_embedding = text_embedding[:, :-1]
elif i == max_embeddings_multiples - 1:
# discard the starting token
text_embedding = text_embedding[:, 1:]
else:
# discard both starting and ending tokens
text_embedding = text_embedding[:, 1:-1]
text_embeddings.append(text_embedding)
text_embeddings = torch.concat(text_embeddings, axis=1)
else:
enc_out = text_encoder(text_input, output_hidden_states=True, return_dict=True)
text_embeddings = enc_out["hidden_states"][-2]
pool = enc_out.get("text_embeds", None) # text encoder 1 doesn't return this
return text_embeddings, pool
def get_weighted_text_embeddings(
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
prompt: Union[str, List[str]],
uncond_prompt: Optional[Union[str, List[str]]] = None,
max_embeddings_multiples: Optional[int] = 1,
no_boseos_middle: Optional[bool] = False,
skip_parsing: Optional[bool] = False,
skip_weighting: Optional[bool] = False,
clip_skip=None,
token_replacer=None,
device=None,
**kwargs,
):
max_length = (tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
if isinstance(prompt, str):
prompt = [prompt]
# split the prompts with "AND". each prompt must have the same number of splits
new_prompts = []
for p in prompt:
new_prompts.extend(p.split(" AND "))
prompt = new_prompts
if not skip_parsing:
prompt_tokens, prompt_weights = get_prompts_with_weights(tokenizer, token_replacer, prompt, max_length - 2)
if uncond_prompt is not None:
if isinstance(uncond_prompt, str):
uncond_prompt = [uncond_prompt]
uncond_tokens, uncond_weights = get_prompts_with_weights(tokenizer, token_replacer, uncond_prompt, max_length - 2)
else:
prompt_tokens = [token[1:-1] for token in tokenizer(prompt, max_length=max_length, truncation=True).input_ids]
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
if uncond_prompt is not None:
if isinstance(uncond_prompt, str):
uncond_prompt = [uncond_prompt]
uncond_tokens = [token[1:-1] for token in tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids]
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
# round up the longest length of tokens to a multiple of (model_max_length - 2)
max_length = max([len(token) for token in prompt_tokens])
if uncond_prompt is not None:
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
max_embeddings_multiples = min(
max_embeddings_multiples,
(max_length - 1) // (tokenizer.model_max_length - 2) + 1,
)
max_embeddings_multiples = max(1, max_embeddings_multiples)
max_length = (tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
# pad the length of tokens and weights
bos = tokenizer.bos_token_id
eos = tokenizer.eos_token_id
pad = tokenizer.pad_token_id
prompt_tokens, prompt_weights = pad_tokens_and_weights(
prompt_tokens,
prompt_weights,
max_length,
bos,
eos,
pad,
no_boseos_middle=no_boseos_middle,
chunk_length=tokenizer.model_max_length,
)
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=device)
if uncond_prompt is not None:
uncond_tokens, uncond_weights = pad_tokens_and_weights(
uncond_tokens,
uncond_weights,
max_length,
bos,
eos,
pad,
no_boseos_middle=no_boseos_middle,
chunk_length=tokenizer.model_max_length,
)
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
# get the embeddings
text_embeddings, text_pool = get_unweighted_text_embeddings(
text_encoder,
prompt_tokens,
tokenizer.model_max_length,
clip_skip,
eos,
pad,
no_boseos_middle=no_boseos_middle,
)
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=device)
if uncond_prompt is not None:
uncond_embeddings, uncond_pool = get_unweighted_text_embeddings(
text_encoder,
uncond_tokens,
tokenizer.model_max_length,
clip_skip,
eos,
pad,
no_boseos_middle=no_boseos_middle,
)
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=device)
# assign weights to the prompts and normalize in the sense of mean
# TODO: should we normalize by chunk or in a whole (current implementation)?
# →全体でいいんじゃないかな
if (not skip_parsing) and (not skip_weighting):
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
text_embeddings *= prompt_weights.unsqueeze(-1)
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
if uncond_prompt is not None:
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
uncond_embeddings *= uncond_weights.unsqueeze(-1)
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
if uncond_prompt is not None:
return text_embeddings, text_pool, uncond_embeddings, uncond_pool, prompt_tokens
return text_embeddings, text_pool, None, None, prompt_tokens
def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def preprocess_mask(mask):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = mask.resize((w // 8, h // 8), resample=PIL.Image.BILINEAR) # LANCZOS)
mask = np.array(mask).astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
mask = 1 - mask # repaint white, keep black
mask = torch.from_numpy(mask)
return mask
# regular expression for dynamic prompt:
# starts and ends with "{" and "}"
# contains at least one variant divided by "|"
# optional framgments divided by "$$" at start
# if the first fragment is "E" or "e", enumerate all variants
# if the second fragment is a number or two numbers, repeat the variants in the range
# if the third fragment is a string, use it as a separator
RE_DYNAMIC_PROMPT = re.compile(r"\{((e|E)\$\$)?(([\d\-]+)\$\$)?(([^\|\}]+?)\$\$)?(.+?((\|).+?)*?)\}")
def handle_dynamic_prompt_variants(prompt, repeat_count):
founds = list(RE_DYNAMIC_PROMPT.finditer(prompt))
if not founds:
return [prompt]
# make each replacement for each variant
enumerating = False
replacers = []
for found in founds:
# if "e$$" is found, enumerate all variants
found_enumerating = found.group(2) is not None
enumerating = enumerating or found_enumerating
separator = ", " if found.group(6) is None else found.group(6)
variants = found.group(7).split("|")
# parse count range
count_range = found.group(4)
if count_range is None:
count_range = [1, 1]
else:
count_range = count_range.split("-")
if len(count_range) == 1:
count_range = [int(count_range[0]), int(count_range[0])]
elif len(count_range) == 2:
count_range = [int(count_range[0]), int(count_range[1])]
else:
print(f"invalid count range: {count_range}")
count_range = [1, 1]
if count_range[0] > count_range[1]:
count_range = [count_range[1], count_range[0]]
if count_range[0] < 0:
count_range[0] = 0
if count_range[1] > len(variants):
count_range[1] = len(variants)
if found_enumerating:
# make function to enumerate all combinations
def make_replacer_enum(vari, cr, sep):
def replacer():
values = []
for count in range(cr[0], cr[1] + 1):
for comb in itertools.combinations(vari, count):
values.append(sep.join(comb))
return values
return replacer
replacers.append(make_replacer_enum(variants, count_range, separator))
else:
# make function to choose random combinations
def make_replacer_single(vari, cr, sep):
def replacer():
count = random.randint(cr[0], cr[1])
comb = random.sample(vari, count)
return [sep.join(comb)]
return replacer
replacers.append(make_replacer_single(variants, count_range, separator))
# make each prompt
if not enumerating:
# if not enumerating, repeat the prompt, replace each variant randomly
prompts = []
for _ in range(repeat_count):
current = prompt
for found, replacer in zip(founds, replacers):
current = current.replace(found.group(0), replacer()[0], 1)
prompts.append(current)
else:
# if enumerating, iterate all combinations for previous prompts
prompts = [prompt]
for found, replacer in zip(founds, replacers):
if found.group(2) is not None:
# make all combinations for existing prompts
new_prompts = []
for current in prompts:
replecements = replacer()
for replecement in replecements:
new_prompts.append(current.replace(found.group(0), replecement, 1))
prompts = new_prompts
for found, replacer in zip(founds, replacers):
# make random selection for existing prompts
if found.group(2) is None:
for i in range(len(prompts)):
prompts[i] = prompts[i].replace(found.group(0), replacer()[0], 1)
return prompts
# endregion
# def load_clip_l14_336(dtype):
# print(f"loading CLIP: {CLIP_ID_L14_336}")
# text_encoder = CLIPTextModel.from_pretrained(CLIP_ID_L14_336, torch_dtype=dtype)
# return text_encoder
class BatchDataBase(NamedTuple):
# バッチ分割が必要ないデータ
step: int
prompt: str
negative_prompt: str
seed: int
init_image: Any
mask_image: Any
clip_prompt: str
guide_image: Any
class BatchDataExt(NamedTuple):
# バッチ分割が必要なデータ
width: int
height: int
original_width: int
original_height: int
crop_left: int
crop_top: int
steps: int
scale: float
negative_scale: float
strength: float
network_muls: Tuple[float]
num_sub_prompts: int
class BatchData(NamedTuple):
return_latents: bool
base: BatchDataBase
ext: BatchDataExt
def main(args):
if args.fp16:
dtype = torch.float16
elif args.bf16:
dtype = torch.bfloat16
else:
dtype = torch.float32
highres_fix = args.highres_fix_scale is not None
# assert not highres_fix or args.image_path is None, f"highres_fix doesn't work with img2img / highres_fixはimg2imgと同時に使えません"
# モデルを読み込む
if not os.path.isfile(args.ckpt): # ファイルがないならパターンで探し、一つだけ該当すればそれを使う
files = glob.glob(args.ckpt)
if len(files) == 1:
args.ckpt = files[0]
use_stable_diffusion_format = os.path.isfile(args.ckpt)
assert use_stable_diffusion_format, "Diffusers pretrained models are not supported yet"
print("load StableDiffusion checkpoint")
text_encoder1, text_encoder2, vae, unet, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V0_9, args.ckpt, "cpu"
)
# else:
# print("load Diffusers pretrained models")
# TODO use Diffusers 0.18.1 and support SDXL pipeline
# raise NotImplementedError("Diffusers pretrained models are not supported yet")
# loading_pipe = StableDiffusionXLPipeline.from_pretrained(args.ckpt, safety_checker=None, torch_dtype=dtype)
# text_encoder = loading_pipe.text_encoder
# vae = loading_pipe.vae
# unet = loading_pipe.unet
# tokenizer = loading_pipe.tokenizer
# del loading_pipe
# # Diffusers U-Net to original U-Net
# original_unet = SdxlUNet2DConditionModel(
# unet.config.sample_size,
# unet.config.attention_head_dim,
# unet.config.cross_attention_dim,
# unet.config.use_linear_projection,
# unet.config.upcast_attention,
# )
# original_unet.load_state_dict(unet.state_dict())
# unet = original_unet
# VAEを読み込む
if args.vae is not None:
vae = model_util.load_vae(args.vae, dtype)
print("additional VAE loaded")
# xformers、Hypernetwork対応
if not args.diffusers_xformers:
mem_eff = not (args.xformers or args.sdpa)
replace_unet_modules(unet, mem_eff, args.xformers, args.sdpa)
replace_vae_modules(vae, mem_eff, args.xformers, args.sdpa)
# tokenizerを読み込む
print("loading tokenizer")
if use_stable_diffusion_format:
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
# schedulerを用意する
sched_init_args = {}
scheduler_num_noises_per_step = 1
if args.sampler == "ddim":
scheduler_cls = DDIMScheduler
scheduler_module = diffusers.schedulers.scheduling_ddim
elif args.sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある
scheduler_cls = DDPMScheduler
scheduler_module = diffusers.schedulers.scheduling_ddpm
elif args.sampler == "pndm":
scheduler_cls = PNDMScheduler
scheduler_module = diffusers.schedulers.scheduling_pndm
elif args.sampler == "lms" or args.sampler == "k_lms":
scheduler_cls = LMSDiscreteScheduler
scheduler_module = diffusers.schedulers.scheduling_lms_discrete
elif args.sampler == "euler" or args.sampler == "k_euler":
scheduler_cls = EulerDiscreteScheduler
scheduler_module = diffusers.schedulers.scheduling_euler_discrete
elif args.sampler == "euler_a" or args.sampler == "k_euler_a":
scheduler_cls = EulerAncestralDiscreteScheduler
scheduler_module = diffusers.schedulers.scheduling_euler_ancestral_discrete
elif args.sampler == "dpmsolver" or args.sampler == "dpmsolver++":
scheduler_cls = DPMSolverMultistepScheduler
sched_init_args["algorithm_type"] = args.sampler
scheduler_module = diffusers.schedulers.scheduling_dpmsolver_multistep
elif args.sampler == "dpmsingle":
scheduler_cls = DPMSolverSinglestepScheduler
scheduler_module = diffusers.schedulers.scheduling_dpmsolver_singlestep
elif args.sampler == "heun":
scheduler_cls = HeunDiscreteScheduler
scheduler_module = diffusers.schedulers.scheduling_heun_discrete
elif args.sampler == "dpm_2" or args.sampler == "k_dpm_2":
scheduler_cls = KDPM2DiscreteScheduler
scheduler_module = diffusers.schedulers.scheduling_k_dpm_2_discrete
elif args.sampler == "dpm_2_a" or args.sampler == "k_dpm_2_a":
scheduler_cls = KDPM2AncestralDiscreteScheduler
scheduler_module = diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete
scheduler_num_noises_per_step = 2
# samplerの乱数をあらかじめ指定するための処理
# replace randn
class NoiseManager:
def __init__(self):
self.sampler_noises = None
self.sampler_noise_index = 0
def reset_sampler_noises(self, noises):
self.sampler_noise_index = 0
self.sampler_noises = noises
def randn(self, shape, device=None, dtype=None, layout=None, generator=None):
# print("replacing", shape, len(self.sampler_noises), self.sampler_noise_index)
if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises):
noise = self.sampler_noises[self.sampler_noise_index]
if shape != noise.shape:
noise = None
else:
noise = None
if noise == None:
print(f"unexpected noise request: {self.sampler_noise_index}, {shape}")
noise = torch.randn(shape, dtype=dtype, device=device, generator=generator)
self.sampler_noise_index += 1
return noise
class TorchRandReplacer:
def __init__(self, noise_manager):
self.noise_manager = noise_manager
def __getattr__(self, item):
if item == "randn":
return self.noise_manager.randn
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
noise_manager = NoiseManager()
if scheduler_module is not None:
scheduler_module.torch = TorchRandReplacer(noise_manager)
scheduler = scheduler_cls(
num_train_timesteps=SCHEDULER_TIMESTEPS,
beta_start=SCHEDULER_LINEAR_START,
beta_end=SCHEDULER_LINEAR_END,
beta_schedule=SCHEDLER_SCHEDULE,
**sched_init_args,
)
# clip_sample=Trueにする
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
print("set clip_sample to True")
scheduler.config.clip_sample = True
# deviceを決定する
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # "mps"を考量してない
# custom pipelineをコピったやつを生成する
if args.vae_slices:
from library.slicing_vae import SlicingAutoencoderKL
sli_vae = SlicingAutoencoderKL(
act_fn="silu",
block_out_channels=(128, 256, 512, 512),
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
in_channels=3,
latent_channels=4,
layers_per_block=2,
norm_num_groups=32,
out_channels=3,
sample_size=512,
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
num_slices=args.vae_slices,
)
sli_vae.load_state_dict(vae.state_dict()) # vaeのパラメータをコピーする
vae = sli_vae
del sli_vae
vae_dtype = dtype
if args.no_half_vae:
print("set vae_dtype to float32")
vae_dtype = torch.float32
vae.to(vae_dtype).to(device)
text_encoder1.to(dtype).to(device)
text_encoder2.to(dtype).to(device)
unet.to(dtype).to(device)
# networkを組み込む
if args.network_module:
networks = []
network_default_muls = []
network_pre_calc = args.network_pre_calc
for i, network_module in enumerate(args.network_module):
print("import network module:", network_module)
imported_module = importlib.import_module(network_module)
network_mul = 1.0 if args.network_mul is None or len(args.network_mul) <= i else args.network_mul[i]
network_default_muls.append(network_mul)
net_kwargs = {}
if args.network_args and i < len(args.network_args):
network_args = args.network_args[i]
# TODO escape special chars
network_args = network_args.split(";")
for net_arg in network_args:
key, value = net_arg.split("=")
net_kwargs[key] = value
if args.network_weights and i < len(args.network_weights):
network_weight = args.network_weights[i]
print("load network weights from:", network_weight)
if model_util.is_safetensors(network_weight) and args.network_show_meta:
from safetensors.torch import safe_open
with safe_open(network_weight, framework="pt") as f:
metadata = f.metadata()
if metadata is not None:
print(f"metadata for: {network_weight}: {metadata}")
network, weights_sd = imported_module.create_network_from_weights(
network_mul, network_weight, vae, [text_encoder1, text_encoder2], unet, for_inference=True, **net_kwargs
)
else:
raise ValueError("No weight. Weight is required.")
if network is None:
return
mergeable = network.is_mergeable()
if args.network_merge and not mergeable:
print("network is not mergiable. ignore merge option.")
if not args.network_merge or not mergeable:
network.apply_to([text_encoder1, text_encoder2], unet)
info = network.load_state_dict(weights_sd, False) # network.load_weightsを使うようにするとよい
print(f"weights are loaded: {info}")
if args.opt_channels_last:
network.to(memory_format=torch.channels_last)
network.to(dtype).to(device)
if network_pre_calc:
print("backup original weights")
network.backup_weights()
networks.append(network)
else:
network.merge_to([text_encoder1, text_encoder2], unet, weights_sd, dtype, device)
else:
networks = []
# upscalerの指定があれば取得する
upscaler = None
if args.highres_fix_upscaler:
print("import upscaler module:", args.highres_fix_upscaler)
imported_module = importlib.import_module(args.highres_fix_upscaler)
us_kwargs = {}
if args.highres_fix_upscaler_args:
for net_arg in args.highres_fix_upscaler_args.split(";"):
key, value = net_arg.split("=")
us_kwargs[key] = value
print("create upscaler")
upscaler = imported_module.create_upscaler(**us_kwargs)
upscaler.to(dtype).to(device)
# ControlNetの処理
control_nets: List[ControlNetInfo] = []
if args.control_net_models:
for i, model in enumerate(args.control_net_models):
prep_type = None if not args.control_net_preps or len(args.control_net_preps) <= i else args.control_net_preps[i]
weight = 1.0 if not args.control_net_weights or len(args.control_net_weights) <= i else args.control_net_weights[i]
ratio = 1.0 if not args.control_net_ratios or len(args.control_net_ratios) <= i else args.control_net_ratios[i]
ctrl_unet, ctrl_net = original_control_net.load_control_net(False, unet, model)
prep = original_control_net.load_preprocess(prep_type)
control_nets.append(ControlNetInfo(ctrl_unet, ctrl_net, prep, weight, ratio))
if args.opt_channels_last:
print(f"set optimizing: channels last")
text_encoder1.to(memory_format=torch.channels_last)
text_encoder2.to(memory_format=torch.channels_last)
vae.to(memory_format=torch.channels_last)
unet.to(memory_format=torch.channels_last)
if networks:
for network in networks:
network.to(memory_format=torch.channels_last)
for cn in control_nets:
cn.unet.to(memory_format=torch.channels_last)
cn.net.to(memory_format=torch.channels_last)
pipe = PipelineLike(
device,
vae,
[text_encoder1, text_encoder2],
[tokenizer1, tokenizer2],
unet,
scheduler,
args.clip_skip,
)
pipe.set_control_nets(control_nets)
print("pipeline is ready.")
if args.diffusers_xformers:
pipe.enable_xformers_memory_efficient_attention()
# Textual Inversionを処理する
if args.textual_inversion_embeddings:
token_ids_embeds1 = []
token_ids_embeds2 = []
for embeds_file in args.textual_inversion_embeddings:
if model_util.is_safetensors(embeds_file):
from safetensors.torch import load_file
data = load_file(embeds_file)
else:
data = torch.load(embeds_file, map_location="cpu")
if "string_to_param" in data:
data = data["string_to_param"]
embeds1 = data["clip_l"] # text encoder 1
embeds2 = data["clip_g"] # text encoder 2
num_vectors_per_token = embeds1.size()[0]
token_string = os.path.splitext(os.path.basename(embeds_file))[0]
# remove non-alphabet characters to avoid splitting by tokenizer
# TODO make random alphabet string
token_string = "".join([c for c in token_string if c.isalpha()])
token_strings = [token_string] + [f"{token_string}{chr(ord('a') + i)}" for i in range(num_vectors_per_token - 1)]
# add new word to tokenizer, count is num_vectors_per_token
num_added_tokens1 = tokenizer1.add_tokens(token_strings)
num_added_tokens2 = tokenizer2.add_tokens(token_strings)
assert num_added_tokens1 == num_vectors_per_token and num_added_tokens2 == num_vectors_per_token, (
f"tokenizer has same word to token string (filename). characters except alphabet are removed: {embeds_file}"
+ f" / 指定した名前(ファイル名)のトークンが既に存在します。アルファベット以外の文字は削除されます: {embeds_file}"
)
token_ids1 = tokenizer1.convert_tokens_to_ids(token_strings)
token_ids2 = tokenizer2.convert_tokens_to_ids(token_strings)
print(f"Textual Inversion embeddings `{token_string}` loaded. Tokens are added: {token_ids1} and {token_ids2}")
assert (
min(token_ids1) == token_ids1[0] and token_ids1[-1] == token_ids1[0] + len(token_ids1) - 1
), f"token ids1 is not ordered"
assert (
min(token_ids2) == token_ids2[0] and token_ids2[-1] == token_ids2[0] + len(token_ids2) - 1
), f"token ids2 is not ordered"
assert len(tokenizer1) - 1 == token_ids1[-1], f"token ids 1 is not end of tokenize: {len(tokenizer1)}"
assert len(tokenizer2) - 1 == token_ids2[-1], f"token ids 2 is not end of tokenize: {len(tokenizer2)}"
if num_vectors_per_token > 1:
pipe.add_token_replacement(0, token_ids1[0], token_ids1) # hoge -> hoge, hogea, hogeb, ...
pipe.add_token_replacement(1, token_ids2[0], token_ids2)
token_ids_embeds1.append((token_ids1, embeds1))
token_ids_embeds2.append((token_ids2, embeds2))
text_encoder1.resize_token_embeddings(len(tokenizer1))
text_encoder2.resize_token_embeddings(len(tokenizer2))
token_embeds1 = text_encoder1.get_input_embeddings().weight.data
token_embeds2 = text_encoder2.get_input_embeddings().weight.data
for token_ids, embeds in token_ids_embeds1:
for token_id, embed in zip(token_ids, embeds):
token_embeds1[token_id] = embed
for token_ids, embeds in token_ids_embeds2:
for token_id, embed in zip(token_ids, embeds):
token_embeds2[token_id] = embed
# promptを取得する
if args.from_file is not None:
print(f"reading prompts from {args.from_file}")
with open(args.from_file, "r", encoding="utf-8") as f:
prompt_list = f.read().splitlines()
prompt_list = [d for d in prompt_list if len(d.strip()) > 0]
elif args.prompt is not None:
prompt_list = [args.prompt]
else:
prompt_list = []
if args.interactive:
args.n_iter = 1
# img2imgの前処理、画像の読み込みなど
def load_images(path):
if os.path.isfile(path):
paths = [path]
else:
paths = (
glob.glob(os.path.join(path, "*.png"))
+ glob.glob(os.path.join(path, "*.jpg"))
+ glob.glob(os.path.join(path, "*.jpeg"))
+ glob.glob(os.path.join(path, "*.webp"))
)
paths.sort()
images = []
for p in paths:
image = Image.open(p)
if image.mode != "RGB":
print(f"convert image to RGB from {image.mode}: {p}")
image = image.convert("RGB")
images.append(image)
return images
def resize_images(imgs, size):
resized = []
for img in imgs:
r_img = img.resize(size, Image.Resampling.LANCZOS)
if hasattr(img, "filename"): # filename属性がない場合があるらしい
r_img.filename = img.filename
resized.append(r_img)
return resized
if args.image_path is not None:
print(f"load image for img2img: {args.image_path}")
init_images = load_images(args.image_path)
assert len(init_images) > 0, f"No image / 画像がありません: {args.image_path}"
print(f"loaded {len(init_images)} images for img2img")
else:
init_images = None
if args.mask_path is not None:
print(f"load mask for inpainting: {args.mask_path}")
mask_images = load_images(args.mask_path)
assert len(mask_images) > 0, f"No mask image / マスク画像がありません: {args.image_path}"
print(f"loaded {len(mask_images)} mask images for inpainting")
else:
mask_images = None
# promptがないとき、画像のPngInfoから取得する
if init_images is not None and len(prompt_list) == 0 and not args.interactive:
print("get prompts from images' meta data")
for img in init_images:
if "prompt" in img.text:
prompt = img.text["prompt"]
if "negative-prompt" in img.text:
prompt += " --n " + img.text["negative-prompt"]
prompt_list.append(prompt)
# プロンプトと画像を一致させるため指定回数だけ繰り返す(画像を増幅する)
l = []
for im in init_images:
l.extend([im] * args.images_per_prompt)
init_images = l
if mask_images is not None:
l = []
for im in mask_images:
l.extend([im] * args.images_per_prompt)
mask_images = l
# 画像サイズにオプション指定があるときはリサイズする
if args.W is not None and args.H is not None:
# highres fix を考慮に入れる
w, h = args.W, args.H
if highres_fix:
w = int(w * args.highres_fix_scale + 0.5)
h = int(h * args.highres_fix_scale + 0.5)
if init_images is not None:
print(f"resize img2img source images to {w}*{h}")
init_images = resize_images(init_images, (w, h))
if mask_images is not None:
print(f"resize img2img mask images to {w}*{h}")
mask_images = resize_images(mask_images, (w, h))
regional_network = False
if networks and mask_images:
# mask を領域情報として流用する、現在は一回のコマンド呼び出しで1枚だけ対応
regional_network = True
print("use mask as region")
size = None
for i, network in enumerate(networks):
if i < 3:
np_mask = np.array(mask_images[0])
np_mask = np_mask[:, :, i]
size = np_mask.shape
else:
np_mask = np.full(size, 255, dtype=np.uint8)
mask = torch.from_numpy(np_mask.astype(np.float32) / 255.0)
network.set_region(i, i == len(networks) - 1, mask)
mask_images = None
prev_image = None # for VGG16 guided
if args.guide_image_path is not None:
print(f"load image for ControlNet guidance: {args.guide_image_path}")
guide_images = []
for p in args.guide_image_path:
guide_images.extend(load_images(p))
print(f"loaded {len(guide_images)} guide images for guidance")
if len(guide_images) == 0:
print(f"No guide image, use previous generated image. / ガイド画像がありません。直前に生成した画像を使います: {args.image_path}")
guide_images = None
else:
guide_images = None
# seed指定時はseedを決めておく
if args.seed is not None:
# dynamic promptを使うと足りなくなる→images_per_promptを適当に大きくしておいてもらう
random.seed(args.seed)
predefined_seeds = [random.randint(0, 0x7FFFFFFF) for _ in range(args.n_iter * len(prompt_list) * args.images_per_prompt)]
if len(predefined_seeds) == 1:
predefined_seeds[0] = args.seed
else:
predefined_seeds = None
# デフォルト画像サイズを設定する:img2imgではこれらの値は無視される(またはW*Hにリサイズ済み)
if args.W is None:
args.W = 1024
if args.H is None:
args.H = 1024
# 画像生成のループ
os.makedirs(args.outdir, exist_ok=True)
max_embeddings_multiples = 1 if args.max_embeddings_multiples is None else args.max_embeddings_multiples
for gen_iter in range(args.n_iter):
print(f"iteration {gen_iter+1}/{args.n_iter}")
iter_seed = random.randint(0, 0x7FFFFFFF)
# バッチ処理の関数
def process_batch(batch: List[BatchData], highres_fix, highres_1st=False):
batch_size = len(batch)
# highres_fixの処理
if highres_fix and not highres_1st:
# 1st stageのバッチを作成して呼び出す:サイズを小さくして呼び出す
is_1st_latent = upscaler.support_latents() if upscaler else args.highres_fix_latents_upscaling
print("process 1st stage")
batch_1st = []
for _, base, ext in batch:
def scale_and_round(x):
if x is None:
return None
return int(x * args.highres_fix_scale + 0.5)
width_1st = scale_and_round(ext.width)
height_1st = scale_and_round(ext.height)
width_1st = width_1st - width_1st % 32
height_1st = height_1st - height_1st % 32
original_width_1st = scale_and_round(ext.original_width)
original_height_1st = scale_and_round(ext.original_height)
crop_left_1st = scale_and_round(ext.crop_left)
crop_top_1st = scale_and_round(ext.crop_top)
strength_1st = ext.strength if args.highres_fix_strength is None else args.highres_fix_strength
ext_1st = BatchDataExt(
width_1st,
height_1st,
original_width_1st,
original_height_1st,
crop_left_1st,
crop_top_1st,
args.highres_fix_steps,
ext.scale,
ext.negative_scale,
strength_1st,
ext.network_muls,
ext.num_sub_prompts,
)
batch_1st.append(BatchData(is_1st_latent, base, ext_1st))
pipe.set_enable_control_net(True) # 1st stageではControlNetを有効にする
images_1st = process_batch(batch_1st, True, True)
# 2nd stageのバッチを作成して以下処理する
print("process 2nd stage")
width_2nd, height_2nd = batch[0].ext.width, batch[0].ext.height
if upscaler:
# upscalerを使って画像を拡大する
lowreso_imgs = None if is_1st_latent else images_1st
lowreso_latents = None if not is_1st_latent else images_1st
# 戻り値はPIL.Image.Imageかtorch.Tensorのlatents
batch_size = len(images_1st)
vae_batch_size = (
batch_size
if args.vae_batch_size is None
else (max(1, int(batch_size * args.vae_batch_size)) if args.vae_batch_size < 1 else args.vae_batch_size)
)
vae_batch_size = int(vae_batch_size)
images_1st = upscaler.upscale(
vae, lowreso_imgs, lowreso_latents, dtype, width_2nd, height_2nd, batch_size, vae_batch_size
)
elif args.highres_fix_latents_upscaling:
# latentを拡大する
org_dtype = images_1st.dtype
if images_1st.dtype == torch.bfloat16:
images_1st = images_1st.to(torch.float) # interpolateがbf16をサポートしていない
images_1st = torch.nn.functional.interpolate(
images_1st, (batch[0].ext.height // 8, batch[0].ext.width // 8), mode="bilinear"
) # , antialias=True)
images_1st = images_1st.to(org_dtype)
else:
# 画像をLANCZOSで拡大する
images_1st = [image.resize((width_2nd, height_2nd), resample=PIL.Image.LANCZOS) for image in images_1st]
batch_2nd = []
for i, (bd, image) in enumerate(zip(batch, images_1st)):
bd_2nd = BatchData(False, BatchDataBase(*bd.base[0:3], bd.base.seed + 1, image, None, *bd.base[6:]), bd.ext)
batch_2nd.append(bd_2nd)
batch = batch_2nd
if args.highres_fix_disable_control_net:
pipe.set_enable_control_net(False) # オプション指定時、2nd stageではControlNetを無効にする
# このバッチの情報を取り出す
(
return_latents,
(step_first, _, _, _, init_image, mask_image, _, guide_image),
(
width,
height,
original_width,
original_height,
crop_left,
crop_top,
steps,
scale,
negative_scale,
strength,
network_muls,
num_sub_prompts,
),
) = batch[0]
noise_shape = (LATENT_CHANNELS, height // DOWNSAMPLING_FACTOR, width // DOWNSAMPLING_FACTOR)
prompts = []
negative_prompts = []
start_code = torch.zeros((batch_size, *noise_shape), device=device, dtype=dtype)
noises = [
torch.zeros((batch_size, *noise_shape), device=device, dtype=dtype)
for _ in range(steps * scheduler_num_noises_per_step)
]
seeds = []
clip_prompts = []
if init_image is not None: # img2img?
i2i_noises = torch.zeros((batch_size, *noise_shape), device=device, dtype=dtype)
init_images = []
if mask_image is not None:
mask_images = []
else:
mask_images = None
else:
i2i_noises = None
init_images = None
mask_images = None
if guide_image is not None: # CLIP image guided?
guide_images = []
else:
guide_images = None
# バッチ内の位置に関わらず同じ乱数を使うためにここで乱数を生成しておく。あわせてimage/maskがbatch内で同一かチェックする
all_images_are_same = True
all_masks_are_same = True
all_guide_images_are_same = True
for i, (_, (_, prompt, negative_prompt, seed, init_image, mask_image, clip_prompt, guide_image), _) in enumerate(batch):
prompts.append(prompt)
negative_prompts.append(negative_prompt)
seeds.append(seed)
clip_prompts.append(clip_prompt)
if init_image is not None:
init_images.append(init_image)
if i > 0 and all_images_are_same:
all_images_are_same = init_images[-2] is init_image
if mask_image is not None:
mask_images.append(mask_image)
if i > 0 and all_masks_are_same:
all_masks_are_same = mask_images[-2] is mask_image
if guide_image is not None:
if type(guide_image) is list:
guide_images.extend(guide_image)
all_guide_images_are_same = False
else:
guide_images.append(guide_image)
if i > 0 and all_guide_images_are_same:
all_guide_images_are_same = guide_images[-2] is guide_image
# make start code
torch.manual_seed(seed)
start_code[i] = torch.randn(noise_shape, device=device, dtype=dtype)
# make each noises
for j in range(steps * scheduler_num_noises_per_step):
noises[j][i] = torch.randn(noise_shape, device=device, dtype=dtype)
if i2i_noises is not None: # img2img noise
i2i_noises[i] = torch.randn(noise_shape, device=device, dtype=dtype)
noise_manager.reset_sampler_noises(noises)
# すべての画像が同じなら1枚だけpipeに渡すことでpipe側で処理を高速化する
if init_images is not None and all_images_are_same:
init_images = init_images[0]
if mask_images is not None and all_masks_are_same:
mask_images = mask_images[0]
if guide_images is not None and all_guide_images_are_same:
guide_images = guide_images[0]
# ControlNet使用時はguide imageをリサイズする
if control_nets:
# TODO resampleのメソッド
guide_images = guide_images if type(guide_images) == list else [guide_images]
guide_images = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in guide_images]
if len(guide_images) == 1:
guide_images = guide_images[0]
# generate
if networks:
# 追加ネットワークの処理
shared = {}
for n, m in zip(networks, network_muls if network_muls else network_default_muls):
n.set_multiplier(m)
if regional_network:
n.set_current_generation(batch_size, num_sub_prompts, width, height, shared)
if not regional_network and network_pre_calc:
for n in networks:
n.restore_weights()
for n in networks:
n.pre_calculation()
print("pre-calculation... done")
images = pipe(
prompts,
negative_prompts,
init_images,
mask_images,
height,
width,
original_height,
original_width,
crop_top,
crop_left,
steps,
scale,
negative_scale,
strength,
latents=start_code,
output_type="pil",
max_embeddings_multiples=max_embeddings_multiples,
img2img_noise=i2i_noises,
vae_batch_size=args.vae_batch_size,
return_latents=return_latents,
clip_prompts=clip_prompts,
clip_guide_images=guide_images,
)
if highres_1st and not args.highres_fix_save_1st: # return images or latents
return images
# save image
highres_prefix = ("0" if highres_1st else "1") if highres_fix else ""
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
for i, (image, prompt, negative_prompts, seed, clip_prompt) in enumerate(
zip(images, prompts, negative_prompts, seeds, clip_prompts)
):
metadata = PngInfo()
metadata.add_text("prompt", prompt)
metadata.add_text("seed", str(seed))
metadata.add_text("sampler", args.sampler)
metadata.add_text("steps", str(steps))
metadata.add_text("scale", str(scale))
if negative_prompt is not None:
metadata.add_text("negative-prompt", negative_prompt)
if negative_scale is not None:
metadata.add_text("negative-scale", str(negative_scale))
if clip_prompt is not None:
metadata.add_text("clip-prompt", clip_prompt)
metadata.add_text("original-height", str(original_height))
metadata.add_text("original-width", str(original_width))
metadata.add_text("crop-top", str(crop_top))
metadata.add_text("crop-left", str(crop_left))
if args.use_original_file_name and init_images is not None:
if type(init_images) is list:
fln = os.path.splitext(os.path.basename(init_images[i % len(init_images)].filename))[0] + ".png"
else:
fln = os.path.splitext(os.path.basename(init_images.filename))[0] + ".png"
elif args.sequential_file_name:
fln = f"im_{highres_prefix}{step_first + i + 1:06d}.png"
else:
fln = f"im_{ts_str}_{highres_prefix}{i:03d}_{seed}.png"
image.save(os.path.join(args.outdir, fln), pnginfo=metadata)
if not args.no_preview and not highres_1st and args.interactive:
try:
import cv2
for prompt, image in zip(prompts, images):
cv2.imshow(prompt[:128], np.array(image)[:, :, ::-1]) # プロンプトが長いと死ぬ
cv2.waitKey()
cv2.destroyAllWindows()
except ImportError:
print("opencv-python is not installed, cannot preview / opencv-pythonがインストールされていないためプレビューできません")
return images
# 画像生成のプロンプトが一周するまでのループ
prompt_index = 0
global_step = 0
batch_data = []
while args.interactive or prompt_index < len(prompt_list):
if len(prompt_list) == 0:
# interactive
valid = False
while not valid:
print("\nType prompt:")
try:
raw_prompt = input()
except EOFError:
break
valid = len(raw_prompt.strip().split(" --")[0].strip()) > 0
if not valid: # EOF, end app
break
else:
raw_prompt = prompt_list[prompt_index]
# sd-dynamic-prompts like variants:
# count is 1 (not dynamic) or images_per_prompt (no enumeration) or arbitrary (enumeration)
raw_prompts = handle_dynamic_prompt_variants(raw_prompt, args.images_per_prompt)
# repeat prompt
for pi in range(args.images_per_prompt if len(raw_prompts) == 1 else len(raw_prompts)):
raw_prompt = raw_prompts[pi] if len(raw_prompts) > 1 else raw_prompts[0]
if pi == 0 or len(raw_prompts) > 1:
# parse prompt: if prompt is not changed, skip parsing
width = args.W
height = args.H
original_width = args.original_width
original_height = args.original_height
crop_top = args.crop_top
crop_left = args.crop_left
scale = args.scale
negative_scale = args.negative_scale
steps = args.steps
seed = None
seeds = None
strength = 0.8 if args.strength is None else args.strength
negative_prompt = ""
clip_prompt = None
network_muls = None
prompt_args = raw_prompt.strip().split(" --")
prompt = prompt_args[0]
print(f"prompt {prompt_index+1}/{len(prompt_list)}: {prompt}")
for parg in prompt_args[1:]:
try:
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
if m:
width = int(m.group(1))
print(f"width: {width}")
continue
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
if m:
height = int(m.group(1))
print(f"height: {height}")
continue
m = re.match(r"ow (\d+)", parg, re.IGNORECASE)
if m:
original_width = int(m.group(1))
print(f"original width: {width}")
continue
m = re.match(r"oh (\d+)", parg, re.IGNORECASE)
if m:
original_height = int(m.group(1))
print(f"original height: {height}")
continue
m = re.match(r"ct (\d+)", parg, re.IGNORECASE)
if m:
crop_top = int(m.group(1))
print(f"crop top: {crop_top}")
continue
m = re.match(r"cl (\d+)", parg, re.IGNORECASE)
if m:
crop_left = int(m.group(1))
print(f"crop left: {crop_left}")
continue
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
if m: # steps
steps = max(1, min(1000, int(m.group(1))))
print(f"steps: {steps}")
continue
m = re.match(r"d ([\d,]+)", parg, re.IGNORECASE)
if m: # seed
seeds = [int(d) for d in m.group(1).split(",")]
print(f"seeds: {seeds}")
continue
m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
if m: # scale
scale = float(m.group(1))
print(f"scale: {scale}")
continue
m = re.match(r"nl ([\d\.]+|none|None)", parg, re.IGNORECASE)
if m: # negative scale
if m.group(1).lower() == "none":
negative_scale = None
else:
negative_scale = float(m.group(1))
print(f"negative scale: {negative_scale}")
continue
m = re.match(r"t ([\d\.]+)", parg, re.IGNORECASE)
if m: # strength
strength = float(m.group(1))
print(f"strength: {strength}")
continue
m = re.match(r"n (.+)", parg, re.IGNORECASE)
if m: # negative prompt
negative_prompt = m.group(1)
print(f"negative prompt: {negative_prompt}")
continue
m = re.match(r"c (.+)", parg, re.IGNORECASE)
if m: # clip prompt
clip_prompt = m.group(1)
print(f"clip prompt: {clip_prompt}")
continue
m = re.match(r"am ([\d\.\-,]+)", parg, re.IGNORECASE)
if m: # network multiplies
network_muls = [float(v) for v in m.group(1).split(",")]
while len(network_muls) < len(networks):
network_muls.append(network_muls[-1])
print(f"network mul: {network_muls}")
continue
except ValueError as ex:
print(f"Exception in parsing / 解析エラー: {parg}")
print(ex)
# prepare seed
if seeds is not None: # given in prompt
# 数が足りないなら前のをそのまま使う
if len(seeds) > 0:
seed = seeds.pop(0)
else:
if predefined_seeds is not None:
if len(predefined_seeds) > 0:
seed = predefined_seeds.pop(0)
else:
print("predefined seeds are exhausted")
seed = None
elif args.iter_same_seed:
seeds = iter_seed
else:
seed = None # 前のを消す
if seed is None:
seed = random.randint(0, 0x7FFFFFFF)
if args.interactive:
print(f"seed: {seed}")
# prepare init image, guide image and mask
init_image = mask_image = guide_image = None
# 同一イメージを使うとき、本当はlatentに変換しておくと無駄がないが面倒なのでとりあえず毎回処理する
if init_images is not None:
init_image = init_images[global_step % len(init_images)]
# img2imgの場合は、基本的に元画像のサイズで生成する。highres fixの場合はargs.W, args.Hとscaleに従いリサイズ済みなので無視する
# 32単位に丸めたやつにresizeされるので踏襲する
if not highres_fix:
width, height = init_image.size
width = width - width % 32
height = height - height % 32
if width != init_image.size[0] or height != init_image.size[1]:
print(
f"img2img image size is not divisible by 32 so aspect ratio is changed / img2imgの画像サイズが32で割り切れないためリサイズされます。画像が歪みます"
)
if mask_images is not None:
mask_image = mask_images[global_step % len(mask_images)]
if guide_images is not None:
if control_nets: # 複数件の場合あり
c = len(control_nets)
p = global_step % (len(guide_images) // c)
guide_image = guide_images[p * c : p * c + c]
else:
guide_image = guide_images[global_step % len(guide_images)]
if regional_network:
num_sub_prompts = len(prompt.split(" AND "))
assert (
len(networks) <= num_sub_prompts
), "Number of networks must be less than or equal to number of sub prompts."
else:
num_sub_prompts = None
b1 = BatchData(
False,
BatchDataBase(global_step, prompt, negative_prompt, seed, init_image, mask_image, clip_prompt, guide_image),
BatchDataExt(
width,
height,
original_width,
original_height,
crop_left,
crop_top,
steps,
scale,
negative_scale,
strength,
tuple(network_muls) if network_muls else None,
num_sub_prompts,
),
)
if len(batch_data) > 0 and batch_data[-1].ext != b1.ext: # バッチ分割必要?
process_batch(batch_data, highres_fix)
batch_data.clear()
batch_data.append(b1)
if len(batch_data) == args.batch_size:
prev_image = process_batch(batch_data, highres_fix)[0]
batch_data.clear()
global_step += 1
prompt_index += 1
if len(batch_data) > 0:
process_batch(batch_data, highres_fix)
batch_data.clear()
print("done!")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default=None, help="prompt / プロンプト")
parser.add_argument(
"--from_file", type=str, default=None, help="if specified, load prompts from this file / 指定時はプロンプトをファイルから読み込む"
)
parser.add_argument(
"--interactive", action="store_true", help="interactive mode (generates one image) / 対話モード(生成される画像は1枚になります)"
)
parser.add_argument(
"--no_preview", action="store_true", help="do not show generated image in interactive mode / 対話モードで画像を表示しない"
)
parser.add_argument(
"--image_path", type=str, default=None, help="image to inpaint or to generate from / img2imgまたはinpaintを行う元画像"
)
parser.add_argument("--mask_path", type=str, default=None, help="mask in inpainting / inpaint時のマスク")
parser.add_argument("--strength", type=float, default=None, help="img2img strength / img2img時のstrength")
parser.add_argument("--images_per_prompt", type=int, default=1, help="number of images per prompt / プロンプトあたりの出力枚数")
parser.add_argument("--outdir", type=str, default="outputs", help="dir to write results to / 生成画像の出力先")
parser.add_argument("--sequential_file_name", action="store_true", help="sequential output file name / 生成画像のファイル名を連番にする")
parser.add_argument(
"--use_original_file_name",
action="store_true",
help="prepend original file name in img2img / img2imgで元画像のファイル名を生成画像のファイル名の先頭に付ける",
)
# parser.add_argument("--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", )
parser.add_argument("--n_iter", type=int, default=1, help="sample this often / 繰り返し回数")
parser.add_argument("--H", type=int, default=None, help="image height, in pixel space / 生成画像高さ")
parser.add_argument("--W", type=int, default=None, help="image width, in pixel space / 生成画像幅")
parser.add_argument(
"--original_height", type=int, default=None, help="original height for SDXL conditioning / SDXLの条件付けに用いるoriginal heightの値"
)
parser.add_argument(
"--original_width", type=int, default=None, help="original width for SDXL conditioning / SDXLの条件付けに用いるoriginal widthの値"
)
parser.add_argument("--crop_top", type=int, default=None, help="crop top for SDXL conditioning / SDXLの条件付けに用いるcrop topの値")
parser.add_argument("--crop_left", type=int, default=None, help="crop left for SDXL conditioning / SDXLの条件付けに用いるcrop leftの値")
parser.add_argument("--batch_size", type=int, default=1, help="batch size / バッチサイズ")
parser.add_argument(
"--vae_batch_size",
type=float,
default=None,
help="batch size for VAE, < 1.0 for ratio / VAE処理時のバッチサイズ、1未満の値の場合は通常バッチサイズの比率",
)
parser.add_argument(
"--vae_slices",
type=int,
default=None,
help="number of slices to split image into for VAE to reduce VRAM usage, None for no splitting (default), slower if specified. 16 or 32 recommended / VAE処理時にVRAM使用量削減のため画像を分割するスライス数、Noneの場合は分割しない(デフォルト)、指定すると遅くなる。16か32程度を推奨",
)
parser.add_argument("--no_half_vae", action="store_true", help="do not use fp16/bf16 precision for VAE / VAE処理時にfp16/bf16を使わない")
parser.add_argument("--steps", type=int, default=50, help="number of ddim sampling steps / サンプリングステップ数")
parser.add_argument(
"--sampler",
type=str,
default="ddim",
choices=[
"ddim",
"pndm",
"lms",
"euler",
"euler_a",
"heun",
"dpm_2",
"dpm_2_a",
"dpmsolver",
"dpmsolver++",
"dpmsingle",
"k_lms",
"k_euler",
"k_euler_a",
"k_dpm_2",
"k_dpm_2_a",
],
help=f"sampler (scheduler) type / サンプラー(スケジューラ)の種類",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty)) / guidance scale",
)
parser.add_argument("--ckpt", type=str, default=None, help="path to checkpoint of model / モデルのcheckpointファイルまたはディレクトリ")
parser.add_argument(
"--vae", type=str, default=None, help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ"
)
parser.add_argument(
"--tokenizer_cache_dir",
type=str,
default=None,
help="directory for caching Tokenizer (for offline training) / Tokenizerをキャッシュするディレクトリ(ネット接続なしでの学習のため)",
)
# parser.add_argument("--replace_clip_l14_336", action='store_true',
# help="Replace CLIP (Text Encoder) to l/14@336 / CLIP(Text Encoder)をl/14@336に入れ替える")
parser.add_argument(
"--seed",
type=int,
default=None,
help="seed, or seed of seeds in multiple generation / 1枚生成時のseed、または複数枚生成時の乱数seedを決めるためのseed",
)
parser.add_argument(
"--iter_same_seed",
action="store_true",
help="use same seed for all prompts in iteration if no seed specified / 乱数seedの指定がないとき繰り返し内はすべて同じseedを使う(プロンプト間の差異の比較用)",
)
parser.add_argument("--fp16", action="store_true", help="use fp16 / fp16を指定し省メモリ化する")
parser.add_argument("--bf16", action="store_true", help="use bfloat16 / bfloat16を指定し省メモリ化する")
parser.add_argument("--xformers", action="store_true", help="use xformers / xformersを使用し高速化する")
parser.add_argument("--sdpa", action="store_true", help="use sdpa in PyTorch 2 / sdpa")
parser.add_argument(
"--diffusers_xformers",
action="store_true",
help="use xformers by diffusers (Hypernetworks doesn't work) / Diffusersでxformersを使用する(Hypernetwork利用不可)",
)
parser.add_argument(
"--opt_channels_last", action="store_true", help="set channels last option to model / モデルにchannels lastを指定し最適化する"
)
parser.add_argument(
"--network_module", type=str, default=None, nargs="*", help="additional network module to use / 追加ネットワークを使う時そのモジュール名"
)
parser.add_argument(
"--network_weights", type=str, default=None, nargs="*", help="additional network weights to load / 追加ネットワークの重み"
)
parser.add_argument("--network_mul", type=float, default=None, nargs="*", help="additional network multiplier / 追加ネットワークの効果の倍率")
parser.add_argument(
"--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数"
)
parser.add_argument("--network_show_meta", action="store_true", help="show metadata of network model / ネットワークモデルのメタデータを表示する")
parser.add_argument("--network_merge", action="store_true", help="merge network weights to original model / ネットワークの重みをマージする")
parser.add_argument(
"--network_pre_calc", action="store_true", help="pre-calculate network for generation / ネットワークのあらかじめ計算して生成する"
)
parser.add_argument(
"--textual_inversion_embeddings",
type=str,
default=None,
nargs="*",
help="Embeddings files of Textual Inversion / Textual Inversionのembeddings",
)
parser.add_argument("--clip_skip", type=int, default=None, help="layer number from bottom to use in CLIP / CLIPの後ろからn層目の出力を使う")
parser.add_argument(
"--max_embeddings_multiples",
type=int,
default=None,
help="max embeding multiples, max token length is 75 * multiples / トークン長をデフォルトの何倍とするか 75*この値 がトークン長となる",
)
parser.add_argument(
"--guide_image_path", type=str, default=None, nargs="*", help="image to CLIP guidance / CLIP guided SDでガイドに使う画像"
)
parser.add_argument(
"--highres_fix_scale",
type=float,
default=None,
help="enable highres fix, reso scale for 1st stage / highres fixを有効にして最初の解像度をこのscaleにする",
)
parser.add_argument(
"--highres_fix_steps", type=int, default=28, help="1st stage steps for highres fix / highres fixの最初のステージのステップ数"
)
parser.add_argument(
"--highres_fix_strength",
type=float,
default=None,
help="1st stage img2img strength for highres fix / highres fixの最初のステージのimg2img時のstrength、省略時はstrengthと同じ",
)
parser.add_argument(
"--highres_fix_save_1st", action="store_true", help="save 1st stage images for highres fix / highres fixの最初のステージの画像を保存する"
)
parser.add_argument(
"--highres_fix_latents_upscaling",
action="store_true",
help="use latents upscaling for highres fix / highres fixでlatentで拡大する",
)
parser.add_argument(
"--highres_fix_upscaler", type=str, default=None, help="upscaler module for highres fix / highres fixで使うupscalerのモジュール名"
)
parser.add_argument(
"--highres_fix_upscaler_args",
type=str,
default=None,
help="additional argmuments for upscaler (key=value) / upscalerへの追加の引数",
)
parser.add_argument(
"--highres_fix_disable_control_net",
action="store_true",
help="disable ControlNet for highres fix / highres fixでControlNetを使わない",
)
parser.add_argument(
"--negative_scale", type=float, default=None, help="set another guidance scale for negative prompt / ネガティブプロンプトのscaleを指定する"
)
parser.add_argument(
"--control_net_models", type=str, default=None, nargs="*", help="ControlNet models to use / 使用するControlNetのモデル名"
)
parser.add_argument(
"--control_net_preps", type=str, default=None, nargs="*", help="ControlNet preprocess to use / 使用するControlNetのプリプロセス名"
)
parser.add_argument("--control_net_weights", type=float, default=None, nargs="*", help="ControlNet weights / ControlNetの重み")
parser.add_argument(
"--control_net_ratios",
type=float,
default=None,
nargs="*",
help="ControlNet guidance ratio for steps / ControlNetでガイドするステップ比率",
)
# parser.add_argument(
# "--control_net_image_path", type=str, default=None, nargs="*", help="image for ControlNet guidance / ControlNetでガイドに使う画像"
# )
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
main(args)
|