Spaces:
Build error
Build error
File size: 5,901 Bytes
11c2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
from tqdm import tqdm
from library import model_util
import library.train_util as train_util
import argparse
from transformers import CLIPTokenizer
import torch
import library.model_util as model_util
import lora
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def interrogate(args):
weights_dtype = torch.float16
# いろいろ準備する
print(f"loading SD model: {args.sd_model}")
args.pretrained_model_name_or_path = args.sd_model
args.vae = None
text_encoder, vae, unet, _ = train_util._load_target_model(args,weights_dtype, DEVICE)
print(f"loading LoRA: {args.model}")
network, weights_sd = lora.create_network_from_weights(1.0, args.model, vae, text_encoder, unet)
# text encoder向けの重みがあるかチェックする:本当はlora側でやるのがいい
has_te_weight = False
for key in weights_sd.keys():
if 'lora_te' in key:
has_te_weight = True
break
if not has_te_weight:
print("This LoRA does not have modules for Text Encoder, cannot interrogate / このLoRAはText Encoder向けのモジュールがないため調査できません")
return
del vae
print("loading tokenizer")
if args.v2:
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
else:
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) # , model_max_length=max_token_length + 2)
text_encoder.to(DEVICE, dtype=weights_dtype)
text_encoder.eval()
unet.to(DEVICE, dtype=weights_dtype)
unet.eval() # U-Netは呼び出さないので不要だけど
# トークンをひとつひとつ当たっていく
token_id_start = 0
token_id_end = max(tokenizer.all_special_ids)
print(f"interrogate tokens are: {token_id_start} to {token_id_end}")
def get_all_embeddings(text_encoder):
embs = []
with torch.no_grad():
for token_id in tqdm(range(token_id_start, token_id_end + 1, args.batch_size)):
batch = []
for tid in range(token_id, min(token_id_end + 1, token_id + args.batch_size)):
tokens = [tokenizer.bos_token_id, tid, tokenizer.eos_token_id]
# tokens = [tid] # こちらは結果がいまひとつ
batch.append(tokens)
# batch_embs = text_encoder(torch.tensor(batch).to(DEVICE))[0].to("cpu") # bos/eosも含めたほうが差が出るようだ [:, 1]
# clip skip対応
batch = torch.tensor(batch).to(DEVICE)
if args.clip_skip is None:
encoder_hidden_states = text_encoder(batch)[0]
else:
enc_out = text_encoder(batch, output_hidden_states=True, return_dict=True)
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.to("cpu")
embs.extend(encoder_hidden_states)
return torch.stack(embs)
print("get original text encoder embeddings.")
orig_embs = get_all_embeddings(text_encoder)
network.apply_to(text_encoder, unet, True, len(network.unet_loras) > 0)
info = network.load_state_dict(weights_sd, strict=False)
print(f"Loading LoRA weights: {info}")
network.to(DEVICE, dtype=weights_dtype)
network.eval()
del unet
print("You can ignore warning messages start with '_IncompatibleKeys' (LoRA model does not have alpha because trained by older script) / '_IncompatibleKeys'の警告は無視して構いません(以前のスクリプトで学習されたLoRAモデルのためalphaの定義がありません)")
print("get text encoder embeddings with lora.")
lora_embs = get_all_embeddings(text_encoder)
# 比べる:とりあえず単純に差分の絶対値で
print("comparing...")
diffs = {}
for i, (orig_emb, lora_emb) in enumerate(zip(orig_embs, tqdm(lora_embs))):
diff = torch.mean(torch.abs(orig_emb - lora_emb))
# diff = torch.mean(torch.cosine_similarity(orig_emb, lora_emb, dim=1)) # うまく検出できない
diff = float(diff.detach().to('cpu').numpy())
diffs[token_id_start + i] = diff
diffs_sorted = sorted(diffs.items(), key=lambda x: -x[1])
# 結果を表示する
print("top 100:")
for i, (token, diff) in enumerate(diffs_sorted[:100]):
# if diff < 1e-6:
# break
string = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens([token]))
print(f"[{i:3d}]: {token:5d} {string:<20s}: {diff:.5f}")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("--v2", action='store_true',
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
parser.add_argument("--sd_model", type=str, default=None,
help="Stable Diffusion model to load: ckpt or safetensors file / 読み込むSDのモデル、ckptまたはsafetensors")
parser.add_argument("--model", type=str, default=None,
help="LoRA model to interrogate: ckpt or safetensors file / 調査するLoRAモデル、ckptまたはsafetensors")
parser.add_argument("--batch_size", type=int, default=16,
help="batch size for processing with Text Encoder / Text Encoderで処理するときのバッチサイズ")
parser.add_argument("--clip_skip", type=int, default=None,
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
return parser
if __name__ == '__main__':
parser = setup_parser()
args = parser.parse_args()
interrogate(args)
|