Spaces:
Sleeping
Sleeping
File size: 6,242 Bytes
bc9f64b f48c06b bc9f64b 89018a0 bc9f64b 2dae07c bc9f64b 2dae07c f48c06b 2dae07c bc9f64b 2dae07c bc9f64b 2dae07c bc9f64b 2dae07c bc9f64b 2dae07c f48c06b 2dae07c f48c06b 2dae07c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import urllib.request
import fitz
import re
import openai
import os
from semantic_search import SemanticSearch
recommender = SemanticSearch()
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
# converts pdf to text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
# converts a text into a list of chunks
def text_to_chunks(texts, word_length=150, start_page=1, file_number=1):
filtered_texts = [''.join(char for char in text if ord(char) < 128) for text in texts]
text_toks = [t.split(' ') for t in filtered_texts]
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[PDF no. {file_number}] [Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
# merges a list of pdfs into a list of chunks and fits the recommender
def load_recommender(paths, start_page=1):
global recommender
chunks = []
print("working")
for idx, path in enumerate(paths):
chunks += text_to_chunks(pdf_to_text(path, start_page=start_page), start_page=start_page, file_number=idx+1)
recommender.fit(chunks)
return 'Corpus Loaded.'
# calls the OpenAI API to generate a response for the given query
def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
openai.api_key = openAI_key
temperature=0.7
max_tokens=256
top_p=1
frequency_penalty=0
presence_penalty=0
if model == "text-davinci-003":
completions = openai.Completion.create(
engine=model,
prompt=prompt,
max_tokens=max_tokens,
n=1,
stop=None,
temperature=temperature,
)
message = completions.choices[0].text
else:
message = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "assistant", "content": "Here is some initial assistant message."},
{"role": "user", "content": prompt}
],
temperature=.3,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
).choices[0].message['content']
return message
# constructs the prompt for the given query
def construct_prompt(question, openAI_key):
topn_chunks = recommender(question)
topn_chunks = summarize_ss_results_if_needed(openAI_key, topn_chunks, model="gpt-3.5-turbo")
prompt = 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [PDF Number][Page Number] notation. "\
"Only answer what is asked. The answer should be short and concise. \n\nQuery: "
prompt += f"{question}\nAnswer:"
print("prompt == " + str(prompt))
return prompt
# main function that is called when the user clicks the submit button, generates an answer for the query
def question_answer(chat_history, url, files, question, openAI_key, model):
try:
if files == None:
files = []
if openAI_key.strip()=='':
return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
if url.strip() == '' and files == []:
return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
if url.strip() != '' and files is not []:
return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
if model is None or model =='':
return '[ERROR]: You have not selected any model. Please choose an LLM model.'
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
print(files)
filenames = []
for file in files:
old_file_name = file.name
file_name = file.name
file_name = file_name[:-12] + file_name[-4:]
os.rename(old_file_name, file_name)
filenames.append(file_name)
load_recommender(filenames)
if question.strip() == '':
return '[ERROR]: Question field is empty'
prompt = construct_prompt(question, openAI_key)
answer = generate_text(openAI_key, prompt, model)
chat_history.append([question, answer])
return chat_history
except openai.error.InvalidRequestError as e:
return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'
def summarize_ss_results_if_needed(openAI_key, chunks, model, token_limit=8000):
total_tokens = sum(len(chunk.split()) for chunk in chunks)
if total_tokens > token_limit:
print("has to summarize")
summary_prompt = "Summarize the following text, while keeping important information, facts and figures. It is also very important to keep the [PDF Number][Page number] notation intact!\n\n"
for c in chunks:
summary_prompt += c + '\n\n'
print(summary_prompt)
return generate_text(openAI_key, summary_prompt, model=model)
else:
return chunks |