File size: 14,906 Bytes
b916cdf
c575e18
 
10c1f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c98db13
 
b916cdf
 
 
c575e18
10c1f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c575e18
 
10c1f9c
 
 
b916cdf
c575e18
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from fastapi import FastAPI, BackgroundTasks, HTTPException, Query
from fastapi.responses import StreamingResponse
from starlette.concurrency import run_in_threadpool
from datasets import load_dataset
import random
import json
from genson import SchemaBuilder
from pathvalidate import sanitize_filename
from openai import OpenAI
import hashlib
from pprint import pprint
import asyncio
import importlib.util
import sys
import json
import jsonschema
# import aiosqlite
from utils import extract_code
import numpy as np
import os


app = FastAPI()


# DATABASE_FILE = "samples.db"


client = OpenAI(
  base_url="https://openrouter.ai/api/v1",
  api_key=os.environ.get('OPENROUTER_KEY')
)


# async def setup_database():
#     async with aiosqlite.connect(DATABASE_FILE) as db:
#         await db.execute("""
#             CREATE TABLE IF NOT EXISTS samples (
#                 hash TEXT PRIMARY KEY,
#                 data TEXT NOT NULL,
#                 dataset TEXT NOT NULL
#             )
#         """)
#         await db.commit()

# async def insert_sample(hash: str, data: str, dataset: str):
#     async with aiosqlite.connect(DATABASE_FILE) as db:
#         # Check if a record with the same hash already exists
#         cursor = await db.execute("SELECT COUNT(*) FROM samples WHERE hash = ?", (hash,))
#         count = await cursor.fetchone()

#         if count[0] == 0:
#             # Insert the new record since it doesn't exist
#             await db.execute("INSERT INTO samples (hash, data, dataset) VALUES (?, ?, ?)", (hash, data, dataset))
#             await db.commit()
#         else:
#             # A record with the same hash already exists
#             print("Record with the same hash already exists in the database.")

# async def get_sample_by_hash(hash: str):
#     async with aiosqlite.connect(DATABASE_FILE) as db:
#         cursor = await db.execute("SELECT data, dataset FROM samples WHERE hash = ?", (hash,))
#         row = await cursor.fetchone()
#         return row

def is_sharegpt(sample):
    schema={'$schema': 'http://json-schema.org/schema#', 'type': 'object', 'properties': {'conversations': {'type': 'array', 'items': {'type': 'object', 'properties': {'from': { 'type': 'string', 'enum': ['human', 'gpt', 'system'] }, 'value': {'type': 'string'}}, 'required': ['from', 'value']}}}, 'required': ['conversations']}
    try:
        jsonschema.validate(instance=sample, schema=schema)
        return True
    except jsonschema.exceptions.ValidationError as e:
        return False

def sha256(string):
    # Create a hashlib object for SHA-256
    sha256_hash = hashlib.sha256()
    # Update the hash object with your string encoded as bytes
    sha256_hash.update(string.encode('utf-8'))

    return sha256_hash.hexdigest()

def get_adapter_name(sample):
    builder = SchemaBuilder()
    builder.add_object(sample)
    schema = builder.to_schema()

    return sha256(json.dumps(schema))

def has_adapter(sample):
    adapter_name = get_adapter_name(sample)

    module_name = f"dataset_adapters.{adapter_name}"
    module_spec = importlib.util.find_spec(module_name)

    if module_spec is None:
        return False

    return True

def auto_tranform(sample):
    adapter_name = get_adapter_name(sample)
    if not has_adapter(sample):
        create_adapter(sample, adapter_name)

    module_name = f"dataset_adapters.{adapter_name}"
    spec = importlib.util.spec_from_file_location(module_name, f"dataset_adapters/{adapter_name}.py")
    dynamic_module = importlib.util.module_from_spec(spec)
    sys.modules[module_name] = dynamic_module
    spec.loader.exec_module(dynamic_module)

    # Use the function from the dynamically imported module
    transformed_data = dynamic_module.transform_data(sample)

    if isinstance(transformed_data, list):
        return {'conversations' : transformed_data}


    return transformed_data




# def create_adapter(sample, adapter_name):
#     builder = SchemaBuilder()
#     builder.add_object(sample)
#     schema = builder.to_schema()

#     code_string = """def transform_data(data):
#     raise Exception('')"""

    with open(f"dataset_adapters/{adapter_name}.py", 'w') as file:
        file.write(code_string)


def create_adapter(sample, adapter_name):
    builder = SchemaBuilder()
    builder.add_object(sample)
    schema = builder.to_schema()

    prompt = f"""Make me minimal and efficient python code to convert data in the shape of 

initial data shape
==========βž‘οΈπŸ“‘πŸ“==========
```jsonschema
{schema}
```
==========βž‘οΈπŸ“‘πŸ“==========

to equivalent data in the form

final data shape
==========β¬‡οΈπŸ“‘πŸ“==========
```jsonschema
{{'$schema': 'http://json-schema.org/schema#', 'type': 'object', 'properties': {{'conversations': {{'type': 'array', 'items': {{'type': 'object', 'properties': {{'from': {{ 'type': 'string', 'enum': ['human', 'gpt', 'system'] }}, 'value': {{'type': 'string'}}}}, 'required': ['from', 'value']}}}}}}, 'required': ['conversations']}}
```
==========β¬‡οΈπŸ“‘πŸ“==========

the data to transform is
```json
{sample}
```


Inside the data to transform, `input` and `instruction` is usually associated with `"from" : "human"` while `output` is usually associated with `"from" : "gpt"`

For transforming the data you shall use python. Make robust and elegant python code that will do the transformation


your code will contain a function `def transform_data(data):` that does the transformation and outputs the newly shaped data. Only the data, no schema. Your code snippet will include only the function signature and body. I know how to call it. You won't need to import anything, I will take care of parsing and dumping json. You work with dicts. Remember to be careful if you iterate over the data because I want the output conversation to always start with the prompt. In other words, always process "input" before "output" and "instruction" before "output". Such heuristics are very important. If there is "instruction" and "input" and the "input" is not empty, concat the input at the end of the first message. If the data contains no "system" message, human always speaks first. If it contains a "system"  message, the "system" message is first, then human, then gpt, then alternating if needed

"human" ALWAYS SPEAKS BEFORE "gpt", if you suspect your code makes "gpt speak first, fix it 

MOST IMPORTANT IS THAT YOU look at the initial data shape (βž‘οΈπŸ“‘πŸ“) to ground your transformation into final data shape (β¬‡οΈπŸ“‘πŸ“)

Your output should contain only the code for `def transform_data(data):`, signature and body. Put the code inside markdown code block"""

    response = client.chat.completions.create(
                        model="openai/gpt-4-1106-preview", # Optional (user controls the default)
                        messages=[
                        { "role": "system", "content": """You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.
Knowledge cutoff: 2023-04
Current date: 2023-11-05

Image input capabilities: Enabled""" },
#                             {"role": "user", "content": f"""Make me minimal and efficient python code to convert data in the shape of 

# ```jsonschema
# {json.dumps(schema)}
# ```

# to equivalent data in the form ```
# {{'$schema': 'http://json-schema.org/schema#', 'type': 'object', 'properties': {{'conversations': {{'type': 'array', 'items': {{'type': 'object', 'properties': {{'from': {{ 'type': 'string', 'enum': ['human', 'gpt', 'system'] }}, 'value': {{'type': 'string'}}}}, 'required': ['from', 'value']}}}}}}, 'required': ['conversations']}}
# ```

# the input is 
# ```
# {json.dumps(sample)}
# ```


# `input` is usually associated with `"from" : "human"` while `output` is usually associated with `"from" : "gpt"`

# don't transform, make robust and elegant python code that will do the transformation


# your code will contain a function `def transform_data(data):` that does the transformation and outputs the newly shaped data. Only the data, no schema. Your code snippet will include only the function signature and body. I know how to call it. You won't need to import anything, I will take care of parsing and dumping json. You work with dicts. Remember to be careful if you iterate over the data because I want the output conversation to always start with the prompt. In other words, always process "input" before "output" and "instruction" before "output". Such heuristics are very important. If there is "instruction" and "input" and the "input" is not empty, concat the input at the end of the first message."""
# }
  {"role": "user", "content": prompt}
                        ]
                               )

    val = response.choices[0].message.content
    # index = val.index('def transform_data(data)')

    # def get_code_start():
    #     for i in range(index,0,-1):
    #         if val[i:i+3] == "```":
    #             idx = val[i:].index('\n')
    #             return i + (idx) + 1

    # def get_code_end():
    #     for i in range(index, len(val)):
    #         if val[i:i+3] == "```":
    #             return i-1

    # code_string = val[get_code_start():get_code_end()]


    # print("###", val)
    code_string = extract_code(val)

    if code_string is None:
        raise Exception("hey la")

    with open(f"dataset_adapters/{adapter_name}.py", 'w') as file:
        file.write(code_string)


@app.get("/sample")
async def get_sample(hash: str = Query(..., alias="hash")):
    res = await get_sample_by_hash(hash)
    if res is None:
        raise HTTPException(status_code=404, detail="Item not found")
    data, dataset = res
    sample= auto_tranform(json.loads(data))
    return {'sample': sample, 'dataset': dataset}

@app.get("/random-sample-stream")
async def get_random_sample(background_tasks: BackgroundTasks, dataset_name: str = Query(..., alias="dataset-name"), index: str = Query(None, alias="index")):
    queue = asyncio.Queue()
    def event_stream(queue):
        yield f"data: {json.dumps({'status': 'grab_sample'})}\n\n" 
        try:




            # dataset = load_dataset(dataset_name,streaming=True)
            # split = [key for key in dataset.keys() if "train" in key]
            
            
            
            
            import requests
            headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
            API_URL = f"https://datasets-server.huggingface.co/info?dataset={dataset_name}"
            def query():
                response = requests.get(API_URL, headers=headers)
                return response.json()
            data = query()

            splits = data['dataset_info']['default']['splits']
            split = next(iter(splits.values()))

            num_samples = split['num_examples']
            split_name = split['name']
            
            # dataset = load_dataset(dataset_name, split=split_name, streaming=True)
            idx = random.randint(0, num_samples) if index is None else int(index)


            API_URL = f"https://datasets-server.huggingface.co/rows?dataset={dataset_name}&config=default&split=train&offset={idx}&length=1"
          
            def query():
                headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
                response = requests.get(API_URL, headers=headers)

                if response.status_code != 200:
                    raise Exception("hugging face api error")
                return response.json()
            data = query()

            random_sample = data['rows'][0]['row']

            # pprint(random_sample)


            # selected = dataset.skip(idx)
            # random_sample = next(iter(selected))#random.choice(samples_buffer)

            hashed = sha256(json.dumps(random_sample))
            # insert_sample(hashed, json.dumps(random_sample), dataset_name)
            # background_tasks.add_task(insert_sample, hashed, json.dumps(random_sample), dataset_name)

        except Exception as e:
            message = ""
            if hasattr(e, 'message'):
                message = e.message
            else:
                message = str(e)
                
            print("error : ", message)
            yield f"data: {json.dumps({'status': 'error', 'message' : message })}\n\n" 

        transformed_data = random_sample

        success = True

        if not is_sharegpt(random_sample):
            try:
                if not has_adapter(random_sample):
                    yield f"data: {json.dumps({'status': 'creating_adapter'})}\n\n" 

                transformed_data = auto_tranform(random_sample)
            except Exception as e:
                success = False
                if hasattr(e, 'message'):
                    print("error : ", e.message)
                else:
                    print("error : ", e)
                yield f"data: {json.dumps({'status': 'error'})}\n\n" 

        if success:
            yield f"data: {json.dumps({'status': 'done', 'data' : transformed_data, 'index' : str(idx)})}\n\n" 

    return StreamingResponse(event_stream(queue), media_type="text/event-stream")



@app.get("/random-sample")
async def get_random_sample(dataset_name: str = Query(..., alias="dataset-name")):
    try:
        dataset = load_dataset(dataset_name,streaming=True)
        split = [key for key in dataset.keys() if "train" in key]
        dataset = load_dataset(dataset_name, split=split[0], streaming=True)

        buffer_size = 100  # Define a reasonable buffer size
        samples_buffer = [sample for _, sample in zip(range(buffer_size), dataset)]
        
        random_sample = random.choice(samples_buffer)


        hashed = sha256(json.dumps(random_sample))

        sanitized = sanitize_filename(dataset_name)
        module_name = f"dataset_adapters.{sanitized}"
        module_spec = importlib.util.find_spec(module_name)

        if module_spec is None:
            create_adapter(random_sample, sanitized)

        spec = importlib.util.spec_from_file_location(module_name, f"dataset_adapters/{sanitized}.py")
        dynamic_module = importlib.util.module_from_spec(spec)
        sys.modules[module_name] = dynamic_module
        spec.loader.exec_module(dynamic_module)

        # Use the function from the dynamically imported module
        transformed_data = dynamic_module.transform_data(random_sample)

        return transformed_data

    except FileNotFoundError:
        raise HTTPException(status_code=404, detail="Dataset not found")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))



# @app.on_event("startup")
# async def startup_event():
#     await setup_database()
@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")