Spaces:
Sleeping
Sleeping
ThiyagaB
commited on
Commit
·
679c28a
1
Parent(s):
2b09ee0
panda query
Browse files- app.py +39 -32
- requirements.txt +5 -1
app.py
CHANGED
@@ -1,22 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
-
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
@@ -24,38 +44,25 @@ def respond(
|
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
"""
|
43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
-
respond
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
from groq import Groq
|
5 |
+
from sqlalchemy import text
|
6 |
|
7 |
"""
|
8 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
"""
|
10 |
+
# client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta",token='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')
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
import pandasql
|
14 |
+
|
15 |
+
# Create a sample DataFrame
|
16 |
+
data = [
|
17 |
+
{"Name": "John", "Age": 25, "Gender": "male", "Votes": 100},
|
18 |
+
{"Name": "Mary", "Age": 30, "Gender": "female", "Votes": 200},
|
19 |
+
{"Name": "Bob", "Age": 28, "Gender": "male", "Votes": 150},
|
20 |
+
{"Name": "Alice", "Age": 24, "Gender": "female", "Votes": 120},
|
21 |
+
]
|
22 |
+
|
23 |
+
# Create a pandas dataframe from the list of dictionaries
|
24 |
+
df = pd.DataFrame(data)
|
25 |
|
26 |
|
27 |
def respond(
|
28 |
message,
|
29 |
history: list[tuple[str, str]],
|
|
|
|
|
|
|
|
|
30 |
):
|
31 |
+
os.environ['GROQ_API_KEY'] = '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'
|
32 |
|
33 |
+
client = Groq()
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "system",
|
37 |
+
"content": "Your task is to convert the input query into a sql statement to be used against a panda dataframe.\n\nGiven the below columns, \n\nColumn1: Age\nColumn2: Name\nColumn3: Gender\nColumn4: Votes\nColumn5: Location\nColumn6: Party\n\n and Table name as df \n and the user input text, \n\nconvert it into a proper sql statement.\n\nIn the where condition make sure you do a case insensitive comparison for text columns, and where possible use like, instead of 'equal' condition. Also when you compare with text always use a lowercase, for example use 'female', not 'Female'. \n\nOutput format:\nIn the response give only the SQL statement starts with 'SELECT', do not add any note or any other explanations"
|
38 |
+
}
|
39 |
+
]
|
40 |
for val in history:
|
41 |
if val[0]:
|
42 |
messages.append({"role": "user", "content": val[0]})
|
|
|
44 |
messages.append({"role": "assistant", "content": val[1]})
|
45 |
|
46 |
messages.append({"role": "user", "content": message})
|
47 |
+
completion = client.chat.completions.create(
|
48 |
+
model="llama3-70b-8192",
|
49 |
+
messages=messages,
|
50 |
+
temperature=1,
|
51 |
+
max_tokens=1024,
|
52 |
+
top_p=1,
|
53 |
+
stream=False,
|
54 |
+
stop=None,
|
55 |
+
)
|
56 |
|
57 |
+
sql_command = completion.choices[0].message.content
|
58 |
+
result = pandasql.sqldf(sql_command, globals())
|
59 |
+
yield str(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
"""
|
62 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
63 |
"""
|
64 |
demo = gr.ChatInterface(
|
65 |
+
respond
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
|
68 |
|
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
gradio
|
3 |
+
groq
|
4 |
+
pandasql
|
5 |
+
sqlalchemy==1.4.46
|