ThiyagaB commited on
Commit
679c28a
·
1 Parent(s): 2b09ee0

panda query

Browse files
Files changed (2) hide show
  1. app.py +39 -32
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,22 +1,42 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
 
 
 
 
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
@@ -24,38 +44,25 @@ def respond(
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
  """
43
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
  """
45
  demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import os
4
+ from groq import Groq
5
+ from sqlalchemy import text
6
 
7
  """
8
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
9
  """
10
+ # client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta",token='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')
11
+
12
+ import pandas as pd
13
+ import pandasql
14
+
15
+ # Create a sample DataFrame
16
+ data = [
17
+ {"Name": "John", "Age": 25, "Gender": "male", "Votes": 100},
18
+ {"Name": "Mary", "Age": 30, "Gender": "female", "Votes": 200},
19
+ {"Name": "Bob", "Age": 28, "Gender": "male", "Votes": 150},
20
+ {"Name": "Alice", "Age": 24, "Gender": "female", "Votes": 120},
21
+ ]
22
+
23
+ # Create a pandas dataframe from the list of dictionaries
24
+ df = pd.DataFrame(data)
25
 
26
 
27
  def respond(
28
  message,
29
  history: list[tuple[str, str]],
 
 
 
 
30
  ):
31
+ os.environ['GROQ_API_KEY'] = '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'
32
 
33
+ client = Groq()
34
+ messages = [
35
+ {
36
+ "role": "system",
37
+ "content": "Your task is to convert the input query into a sql statement to be used against a panda dataframe.\n\nGiven the below columns, \n\nColumn1: Age\nColumn2: Name\nColumn3: Gender\nColumn4: Votes\nColumn5: Location\nColumn6: Party\n\n and Table name as df \n and the user input text, \n\nconvert it into a proper sql statement.\n\nIn the where condition make sure you do a case insensitive comparison for text columns, and where possible use like, instead of 'equal' condition. Also when you compare with text always use a lowercase, for example use 'female', not 'Female'. \n\nOutput format:\nIn the response give only the SQL statement starts with 'SELECT', do not add any note or any other explanations"
38
+ }
39
+ ]
40
  for val in history:
41
  if val[0]:
42
  messages.append({"role": "user", "content": val[0]})
 
44
  messages.append({"role": "assistant", "content": val[1]})
45
 
46
  messages.append({"role": "user", "content": message})
47
+ completion = client.chat.completions.create(
48
+ model="llama3-70b-8192",
49
+ messages=messages,
50
+ temperature=1,
51
+ max_tokens=1024,
52
+ top_p=1,
53
+ stream=False,
54
+ stop=None,
55
+ )
56
 
57
+ sql_command = completion.choices[0].message.content
58
+ result = pandasql.sqldf(sql_command, globals())
59
+ yield str(result)
 
 
 
 
 
 
 
 
 
 
60
 
61
  """
62
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
63
  """
64
  demo = gr.ChatInterface(
65
+ respond
 
 
 
 
 
 
 
 
 
 
 
 
66
  )
67
 
68
 
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ gradio
3
+ groq
4
+ pandasql
5
+ sqlalchemy==1.4.46