Spaces:
Runtime error
Runtime error
File size: 14,103 Bytes
f80dc67 8412bda f80dc67 8412bda f80dc67 49885d4 f80dc67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import gradio as gr
from gradio import ChatInterface, Request
from gradio.helpers import special_args
import anyio
import os
import threading
import sys
from itertools import chain
import autogen
from autogen.code_utils import extract_code
from autogen import UserProxyAgent, AssistantAgent, Agent, OpenAIWrapper
LOG_LEVEL = "INFO"
TIMEOUT = 60
class myChatInterface(ChatInterface):
async def _submit_fn(
self,
message: str,
history_with_input: list[list[str | None]],
request: Request,
*args,
) -> tuple[list[list[str | None]], list[list[str | None]]]:
history = history_with_input[:-1]
inputs, _, _ = special_args(
self.fn, inputs=[message, history, *args], request=request
)
if self.is_async:
response = await self.fn(*inputs)
else:
response = await anyio.to_thread.run_sync(
self.fn, *inputs, limiter=self.limiter
)
# history.append([message, response])
return history, history
with gr.Blocks() as demo:
def flatten_chain(list_of_lists):
return list(chain.from_iterable(list_of_lists))
class thread_with_trace(threading.Thread):
# https://www.geeksforgeeks.org/python-different-ways-to-kill-a-thread/
# https://stackoverflow.com/questions/6893968/how-to-get-the-return-value-from-a-thread
def __init__(self, *args, **keywords):
threading.Thread.__init__(self, *args, **keywords)
self.killed = False
self._return = None
def start(self):
self.__run_backup = self.run
self.run = self.__run
threading.Thread.start(self)
def __run(self):
sys.settrace(self.globaltrace)
self.__run_backup()
self.run = self.__run_backup
def run(self):
if self._target is not None:
self._return = self._target(*self._args, **self._kwargs)
def globaltrace(self, frame, event, arg):
if event == "call":
return self.localtrace
else:
return None
def localtrace(self, frame, event, arg):
if self.killed:
if event == "line":
raise SystemExit()
return self.localtrace
def kill(self):
self.killed = True
def join(self, timeout=0):
threading.Thread.join(self, timeout)
return self._return
def update_agent_history(recipient, messages, sender, config):
if config is None:
config = recipient
if messages is None:
messages = recipient._oai_messages[sender]
message = messages[-1]
msg = message.get("content", "")
# config.append(msg) if msg is not None else None # config can be agent_history
return False, None # required to ensure the agent communication flow continues
def _is_termination_msg(message):
"""Check if a message is a termination message.
Terminate when no code block is detected. Currently only detect python code blocks.
"""
if isinstance(message, dict):
message = message.get("content")
if message is None:
return False
cb = extract_code(message)
contain_code = False
for c in cb:
# todo: support more languages
if c[0] == "python":
contain_code = True
break
return not contain_code
def initialize_agents(config_list):
assistant = AssistantAgent(
name="assistant",
max_consecutive_auto_reply=10,
llm_config={
# "seed": 42,
"timeout": TIMEOUT,
"config_list": config_list,
},
)
userproxy = UserProxyAgent(
name="userproxy",
human_input_mode="NEVER",
is_termination_msg=_is_termination_msg,
max_consecutive_auto_reply=10,
# code_execution_config=False,
code_execution_config={
"work_dir": "coding",
"use_docker": False, # set to True or image name like "python:3" to use docker
},
)
# assistant.register_reply([Agent, None], update_agent_history)
# userproxy.register_reply([Agent, None], update_agent_history)
return assistant, userproxy
def chat_to_oai_message(chat_history):
"""Convert chat history to OpenAI message format."""
messages = []
if LOG_LEVEL == "DEBUG":
print(f"chat_to_oai_message: {chat_history}")
for msg in chat_history:
messages.append(
{
"content": msg[0].split()[0]
if msg[0].startswith("exitcode")
else msg[0],
"role": "user",
}
)
messages.append({"content": msg[1], "role": "assistant"})
return messages
def oai_message_to_chat(oai_messages, sender):
"""Convert OpenAI message format to chat history."""
chat_history = []
messages = oai_messages[sender]
if LOG_LEVEL == "DEBUG":
print(f"oai_message_to_chat: {messages}")
for i in range(0, len(messages), 2):
chat_history.append(
[
messages[i]["content"],
messages[i + 1]["content"] if i + 1 < len(messages) else "",
]
)
return chat_history
def agent_history_to_chat(agent_history):
"""Convert agent history to chat history."""
chat_history = []
for i in range(0, len(agent_history), 2):
chat_history.append(
[
agent_history[i],
agent_history[i + 1] if i + 1 < len(agent_history) else None,
]
)
return chat_history
def initiate_chat(config_list, user_message, chat_history):
if LOG_LEVEL == "DEBUG":
print(f"chat_history_init: {chat_history}")
# agent_history = flatten_chain(chat_history)
if len(config_list[0].get("api_key", "")) < 2:
chat_history.append(
[
user_message,
"Hi, nice to meet you! Please enter your API keys in below text boxs.",
]
)
return chat_history
else:
llm_config = {
# "seed": 42,
"timeout": TIMEOUT,
"config_list": config_list,
}
assistant.llm_config.update(llm_config)
assistant.client = OpenAIWrapper(**assistant.llm_config)
if user_message.strip().lower().startswith("show file:"):
filename = user_message.strip().lower().replace("show file:", "").strip()
filepath = os.path.join("coding", filename)
if os.path.exists(filepath):
chat_history.append([user_message, (filepath,)])
else:
chat_history.append([user_message, f"File {filename} not found."])
return chat_history
assistant.reset()
oai_messages = chat_to_oai_message(chat_history)
assistant._oai_system_message_origin = assistant._oai_system_message.copy()
assistant._oai_system_message += oai_messages
try:
userproxy.initiate_chat(assistant, message=user_message)
messages = userproxy.chat_messages
chat_history += oai_message_to_chat(messages, assistant)
# agent_history = flatten_chain(chat_history)
except Exception as e:
# agent_history += [user_message, str(e)]
# chat_history[:] = agent_history_to_chat(agent_history)
chat_history.append([user_message, str(e)])
assistant._oai_system_message = assistant._oai_system_message_origin.copy()
if LOG_LEVEL == "DEBUG":
print(f"chat_history: {chat_history}")
# print(f"agent_history: {agent_history}")
return chat_history
def chatbot_reply_thread(input_text, chat_history, config_list):
"""Chat with the agent through terminal."""
thread = thread_with_trace(
target=initiate_chat, args=(config_list, input_text, chat_history)
)
thread.start()
try:
messages = thread.join(timeout=TIMEOUT)
if thread.is_alive():
thread.kill()
thread.join()
messages = [
input_text,
"Timeout Error: Please check your API keys and try again later.",
]
except Exception as e:
messages = [
[
input_text,
str(e)
if len(str(e)) > 0
else "Invalid Request to OpenAI, please check your API keys.",
]
]
return messages
def chatbot_reply_plain(input_text, chat_history, config_list):
"""Chat with the agent through terminal."""
try:
messages = initiate_chat(config_list, input_text, chat_history)
except Exception as e:
messages = [
[
input_text,
str(e)
if len(str(e)) > 0
else "Invalid Request to OpenAI, please check your API keys.",
]
]
return messages
def chatbot_reply(input_text, chat_history, config_list):
"""Chat with the agent through terminal."""
return chatbot_reply_thread(input_text, chat_history, config_list)
def get_description_text():
return """
# Microsoft AutoGen: Multi-Round Human Interaction Chatbot Demo
This demo shows how to build a chatbot which can handle multi-round conversations with human interactions.
#### [AutoGen](https://github.com/microsoft/autogen) [Discord](https://discord.gg/pAbnFJrkgZ) [Paper](https://arxiv.org/abs/2308.08155) [SourceCode](https://github.com/thinkall/autogen-demos)
"""
def update_config():
config_list = autogen.config_list_from_models(
model_list=[os.environ.get("MODEL", "gpt-35-turbo")],
)
if not config_list:
config_list = [
{
"api_key": "",
"base_url": "",
"api_type": "azure",
"api_version": "2023-07-01-preview",
"model": "gpt-35-turbo",
}
]
return config_list
def set_params(model, oai_key, aoai_key, aoai_base):
os.environ["MODEL"] = model
os.environ["OPENAI_API_KEY"] = oai_key
os.environ["AZURE_OPENAI_API_KEY"] = aoai_key
os.environ["AZURE_OPENAI_API_BASE"] = aoai_base
def respond(message, chat_history, model, oai_key, aoai_key, aoai_base):
set_params(model, oai_key, aoai_key, aoai_base)
config_list = update_config()
chat_history[:] = chatbot_reply(message, chat_history, config_list)
if LOG_LEVEL == "DEBUG":
print(f"return chat_history: {chat_history}")
return ""
config_list, assistant, userproxy = (
[
{
"api_key": "",
"base_url": "",
"api_type": "azure",
"api_version": "2023-07-01-preview",
"model": "gpt-35-turbo",
}
],
None,
None,
)
assistant, userproxy = initialize_agents(config_list)
description = gr.Markdown(get_description_text())
with gr.Row() as params:
txt_model = gr.Dropdown(
label="Model",
choices=[
"gpt-4",
"gpt-35-turbo",
"gpt-3.5-turbo",
],
allow_custom_value=True,
value="gpt-35-turbo",
container=True,
)
txt_oai_key = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter OpenAI API Key",
max_lines=1,
show_label=True,
container=True,
type="password",
)
txt_aoai_key = gr.Textbox(
label="Azure OpenAI API Key",
placeholder="Enter Azure OpenAI API Key",
max_lines=1,
show_label=True,
container=True,
type="password",
)
txt_aoai_base_url = gr.Textbox(
label="Azure OpenAI API Base",
placeholder="Enter Azure OpenAI Base Url",
max_lines=1,
show_label=True,
container=True,
type="password",
)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
avatar_images=(
"human.png",
(os.path.join(os.path.dirname(__file__), "autogen.png")),
),
render=False,
height=600,
)
txt_input = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter",
container=False,
render=False,
autofocus=True,
)
chatiface = myChatInterface(
respond,
chatbot=chatbot,
textbox=txt_input,
additional_inputs=[
txt_model,
txt_oai_key,
txt_aoai_key,
txt_aoai_base_url,
],
examples=[
["write a python function to count the sum of two numbers?"],
["what if the production of two numbers?"],
[
"Plot a chart of the last year's stock prices of Microsoft, Google and Apple and save to stock_price.png."
],
["show file: stock_price.png"],
],
)
if __name__ == "__main__":
demo.launch(share=True, server_name="0.0.0.0")
|