Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import librosa | |
########################LLama model############################### | |
# from transformers import AutoModelForCausalLM, AutoTokenizer | |
# model_name_or_path = "TheBloke/llama2_7b_chat_uncensored-GPTQ" | |
# # To use a different branch, change revision | |
# # For example: revision="main" | |
# model = AutoModelForCausalLM.from_pretrained(model_name_or_path, | |
# device_map="auto", | |
# trust_remote_code=True, | |
# revision="main", | |
# #quantization_config=QuantizationConfig(disable_exllama=True) | |
# ) | |
# tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) | |
# Llama_pipe = pipeline( | |
# "text-generation", | |
# model=model, | |
# tokenizer=tokenizer, | |
# max_new_tokens=40, | |
# do_sample=True, | |
# temperature=0.7, | |
# top_p=0.95, | |
# top_k=40, | |
# repetition_penalty=1.1 | |
# ) | |
# history="""User: Hello, Rally? | |
# Rally: I'm happy to see you again. What you want to talk to day? | |
# User: Let's talk about food | |
# Rally: Sure. | |
# User: I'm hungry right now. Do you know any Vietnamese food?""" | |
# prompt_template = f"""<|im_start|>system | |
# Write one sentence to continue the conversation<|im_end|> | |
# {history} | |
# Rally:""" | |
# print(Llama_pipe(prompt_template)[0]['generated_text']) | |
# def RallyRespone(chat_history, message): | |
# chat_history += "User: " + message + "\n" | |
# t_chat = Llama_pipe(prompt_template)[0]['generated_text'] | |
# res = t_chat[t_chat.rfind("Rally: "):] | |
# return res | |
########################ASR model############################### | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-base") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") | |
model.config.forced_decoder_ids = None | |
sample_rate = 16000 | |
def ASR_model(audio, sr=16000): | |
DB_audio = audio | |
input_features = processor(audio, sampling_rate=sr, return_tensors="pt").input_features | |
# generate token ids | |
predicted_ids = model.generate(input_features) | |
# decode token ids to text | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription | |
########################Gradio UI############################### | |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text. | |
def add_file(files): | |
return files.name | |
def print_like_dislike(x: gr.LikeData): | |
print(x.index, x.value, x.liked) | |
def upfile(files): | |
x = librosa.load(files, sr=16000) | |
print(x[0]) | |
text = ASR_model(x[0]) | |
return [text[0], text[0]] | |
def transcribe(audio): | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"], transcriber({"sampling_rate": sr, "raw": y})["text"] | |
# def recommand(text): | |
# ret = "answer for" | |
# return ret + text | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, gr.Textbox(value="", interactive=False) | |
# def bot(history): | |
# response = "**That's cool!**" | |
# history[-1][1] = "" | |
# for character in response: | |
# history[-1][1] += character | |
# time.sleep(0.05) | |
# yield history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
bubble_full_width=False, | |
) | |
file_output = gr.File() | |
def respond(message, chat_history): | |
bot_message = RallyRespone(chat_history, message) | |
chat_history.append((message, bot_message)) | |
time.sleep(2) | |
print (chat_history[-1]) | |
return chat_history[-1][-1], chat_history | |
with gr.Row(): | |
with gr.Column(): | |
audio_speech = gr.Audio(sources=["microphone"]) | |
submit = gr.Button("Submit") | |
send = gr.Button("Send") | |
btn = gr.UploadButton("📁", file_types=["audio"]) | |
with gr.Column(): | |
opt1 = gr.Button("1: ") | |
opt2 = gr.Button("2: ") | |
#submit.click(translate, inputs=audio_speech, outputs=[opt1, opt2]) | |
# output is opt1 value, opt2 value [ , ] | |
file_msg = btn.upload(add_file, btn, file_output) | |
submit.click(upfile, inputs=file_output, outputs=[opt1, opt2]) | |
send.click(transcribe, inputs=audio_speech, outputs=[opt1, opt2]) | |
opt1.click(respond, [opt1, chatbot], [opt1, chatbot]) | |
opt2.click(respond, [opt2, chatbot], [opt2, chatbot]) | |
#opt2.click(recommand, inputs=opt2) | |
#click event maybe BOT . generate history = optx.value, | |
chatbot.like(print_like_dislike, None, None) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(debug=True) |