Spaces:
Runtime error
Runtime error
Update model.py
Browse files
model.py
CHANGED
@@ -1,118 +1,122 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
from langchain_community.
|
12 |
-
from
|
13 |
-
from langchain.
|
14 |
-
from
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"unsloth/
|
23 |
-
"unsloth/
|
24 |
-
"unsloth/
|
25 |
-
"unsloth/
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
###
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
return llm_chain
|
|
|
1 |
+
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
2 |
+
pip install --no-deps xformers "trl<0.9.0" peft accelerate bitsandbytes
|
3 |
+
|
4 |
+
|
5 |
+
from unsloth import FastLanguageModel
|
6 |
+
import torch
|
7 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
8 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
9 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
10 |
+
|
11 |
+
from langchain_community.llms import CTransformers
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain_community.embeddings import GPT4AllEmbeddings
|
15 |
+
from langchain_community.vectorstores import FAISS
|
16 |
+
from langchain_community.llms import HuggingFacePipeline
|
17 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
18 |
+
from transformers import pipeline
|
19 |
+
|
20 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
21 |
+
fourbit_models = [
|
22 |
+
"unsloth/mistral-7b-bnb-4bit",
|
23 |
+
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
|
24 |
+
"unsloth/llama-2-7b-bnb-4bit",
|
25 |
+
"unsloth/llama-2-13b-bnb-4bit",
|
26 |
+
"unsloth/codellama-34b-bnb-4bit",
|
27 |
+
"unsloth/tinyllama-bnb-4bit",
|
28 |
+
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
|
29 |
+
"unsloth/gemma-2b-bnb-4bit",
|
30 |
+
] # More models at https://huggingface.co/unsloth
|
31 |
+
|
32 |
+
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
33 |
+
|
34 |
+
### Instruction:
|
35 |
+
You are ResVuAssist and You are a helpful bot who reads texts and answers questions about them.
|
36 |
+
|
37 |
+
### Input:
|
38 |
+
{context}
|
39 |
+
QUESTION: {question}
|
40 |
+
|
41 |
+
### Response:
|
42 |
+
"""
|
43 |
+
|
44 |
+
# Cau hinh
|
45 |
+
vector_db_path = "vectorstores/db_faiss"
|
46 |
+
|
47 |
+
|
48 |
+
def initialModelAndTokenizer():
|
49 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
50 |
+
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
|
51 |
+
max_seq_length = max_seq_length,
|
52 |
+
dtype = dtype,
|
53 |
+
load_in_4bit = load_in_4bit,
|
54 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
55 |
+
)
|
56 |
+
model = FastLanguageModel.get_peft_model(
|
57 |
+
model,
|
58 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
59 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
60 |
+
"gate_proj", "up_proj", "down_proj",],
|
61 |
+
lora_alpha = 16,
|
62 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
63 |
+
bias = "none", # Supports any, but = "none" is optimized
|
64 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
65 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
66 |
+
random_state = 3407,
|
67 |
+
use_rslora = False, # We support rank stabilized LoRA
|
68 |
+
loftq_config = None, # And LoftQ
|
69 |
+
)
|
70 |
+
return model, tokenizer
|
71 |
+
|
72 |
+
def create_pipeline():
|
73 |
+
model, tokenizer = initialModelAndTokenizer()
|
74 |
+
pipe = pipeline(
|
75 |
+
"text-generation",
|
76 |
+
model=model,
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
max_new_tokens=512,
|
79 |
+
temperature=0.1,
|
80 |
+
top_p=0.95,
|
81 |
+
repetition_penalty=1.15
|
82 |
+
)
|
83 |
+
return pipe
|
84 |
+
|
85 |
+
# Tao prompt template
|
86 |
+
def creat_prompt(template):
|
87 |
+
prompt = PromptTemplate(template = template, input_variables=["context", "question"])
|
88 |
+
return prompt
|
89 |
+
|
90 |
+
# Tao simple chain
|
91 |
+
def create_qa_chain(prompt, llm, db):
|
92 |
+
llm_chain = RetrievalQA.from_chain_type(
|
93 |
+
llm = llm,
|
94 |
+
chain_type= "stuff",
|
95 |
+
# retriever = db.as_retriever(search_kwargs = {"k":8}, max_tokens_limit=1024),
|
96 |
+
retriever = db.as_retriever(search_kwargs = {"k": 15}, max_tokens_limit=4096),
|
97 |
+
return_source_documents = False,
|
98 |
+
chain_type_kwargs= {'prompt': prompt},
|
99 |
+
)
|
100 |
+
return llm_chain
|
101 |
+
|
102 |
+
# Read tu VectorDB
|
103 |
+
def read_vectors_db():
|
104 |
+
# Embeding
|
105 |
+
embedding_model = GPT4AllEmbeddings(model_name="all-MiniLM-L6-v2.gguf2.f16.gguf")
|
106 |
+
db = FAISS.load_local(vector_db_path, embedding_model, allow_dangerous_deserialization=True)
|
107 |
+
return db
|
108 |
+
|
109 |
+
def get_response_value(text):
|
110 |
+
start = text.find('### Response:')
|
111 |
+
if start != -1:
|
112 |
+
return text[start + len('### Response:'):].strip()
|
113 |
+
return None
|
114 |
+
|
115 |
+
def llm_chain_response():
|
116 |
+
pipe = create_pipeline()
|
117 |
+
db = read_vectors_db()
|
118 |
+
prompt = creat_prompt(template)
|
119 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
120 |
+
|
121 |
+
llm_chain =create_qa_chain(prompt, llm, db)
|
122 |
return llm_chain
|