Spaces:
Runtime error
Runtime error
from unsloth import FastLanguageModel | |
import torch | |
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. | |
from langchain_community.llms import CTransformers | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import PromptTemplate | |
from langchain_community.embeddings import GPT4AllEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.callbacks.base import BaseCallbackHandler | |
from transformers import pipeline | |
# 4bit pre quantized models we support for 4x faster downloading + no OOMs. | |
fourbit_models = [ | |
"unsloth/mistral-7b-bnb-4bit", | |
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit", | |
"unsloth/llama-2-7b-bnb-4bit", | |
"unsloth/llama-2-13b-bnb-4bit", | |
"unsloth/codellama-34b-bnb-4bit", | |
"unsloth/tinyllama-bnb-4bit", | |
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster! | |
"unsloth/gemma-2b-bnb-4bit", | |
] # More models at https://huggingface.co/unsloth | |
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
You are ResVuAssist and You are a helpful bot who reads texts and answers questions about them. | |
### Input: | |
{context} | |
QUESTION: {question} | |
### Response: | |
""" | |
# Cau hinh | |
vector_db_path = "vectorstores/db_faiss" | |
def initialModelAndTokenizer(): | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit, | |
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf | |
) | |
model = FastLanguageModel.get_peft_model( | |
model, | |
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | |
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", | |
"gate_proj", "up_proj", "down_proj",], | |
lora_alpha = 16, | |
lora_dropout = 0, # Supports any, but = 0 is optimized | |
bias = "none", # Supports any, but = "none" is optimized | |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! | |
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context | |
random_state = 3407, | |
use_rslora = False, # We support rank stabilized LoRA | |
loftq_config = None, # And LoftQ | |
) | |
return model, tokenizer | |
def create_pipeline(): | |
model, tokenizer = initialModelAndTokenizer() | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=512, | |
temperature=0.1, | |
top_p=0.95, | |
repetition_penalty=1.15 | |
) | |
return pipe | |
# Tao prompt template | |
def creat_prompt(template): | |
prompt = PromptTemplate(template = template, input_variables=["context", "question"]) | |
return prompt | |
# Tao simple chain | |
def create_qa_chain(prompt, llm, db): | |
llm_chain = RetrievalQA.from_chain_type( | |
llm = llm, | |
chain_type= "stuff", | |
# retriever = db.as_retriever(search_kwargs = {"k":8}, max_tokens_limit=1024), | |
retriever = db.as_retriever(search_kwargs = {"k": 15}, max_tokens_limit=4096), | |
return_source_documents = False, | |
chain_type_kwargs= {'prompt': prompt}, | |
) | |
return llm_chain | |
# Read tu VectorDB | |
def read_vectors_db(): | |
# Embeding | |
embedding_model = GPT4AllEmbeddings(model_name="all-MiniLM-L6-v2.gguf2.f16.gguf") | |
db = FAISS.load_local(vector_db_path, embedding_model, allow_dangerous_deserialization=True) | |
return db | |
def get_response_value(text): | |
start = text.find('### Response:') | |
if start != -1: | |
return text[start + len('### Response:'):].strip() | |
return None | |
def llm_chain_response(): | |
pipe = create_pipeline() | |
db = read_vectors_db() | |
prompt = creat_prompt(template) | |
llm = HuggingFacePipeline(pipeline=pipe) | |
llm_chain =create_qa_chain(prompt, llm, db) | |
return llm_chain |