ResvuChatbox / model.py
thinh111's picture
initial
615a1d7 verified
raw
history blame
4.41 kB
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
from langchain_community.llms import CTransformers
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.callbacks.base import BaseCallbackHandler
from transformers import pipeline
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/llama-2-13b-bnb-4bit",
"unsloth/codellama-34b-bnb-4bit",
"unsloth/tinyllama-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
"unsloth/gemma-2b-bnb-4bit",
] # More models at https://huggingface.co/unsloth
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
You are ResVuAssist and You are a helpful bot who reads texts and answers questions about them.
### Input:
{context}
QUESTION: {question}
### Response:
"""
# Cau hinh
vector_db_path = "vectorstores/db_faiss"
def initialModelAndTokenizer():
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
return model, tokenizer
def create_pipeline():
model, tokenizer = initialModelAndTokenizer()
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.1,
top_p=0.95,
repetition_penalty=1.15
)
return pipe
# Tao prompt template
def creat_prompt(template):
prompt = PromptTemplate(template = template, input_variables=["context", "question"])
return prompt
# Tao simple chain
def create_qa_chain(prompt, llm, db):
llm_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type= "stuff",
# retriever = db.as_retriever(search_kwargs = {"k":8}, max_tokens_limit=1024),
retriever = db.as_retriever(search_kwargs = {"k": 15}, max_tokens_limit=4096),
return_source_documents = False,
chain_type_kwargs= {'prompt': prompt},
)
return llm_chain
# Read tu VectorDB
def read_vectors_db():
# Embeding
embedding_model = GPT4AllEmbeddings(model_name="all-MiniLM-L6-v2.gguf2.f16.gguf")
db = FAISS.load_local(vector_db_path, embedding_model, allow_dangerous_deserialization=True)
return db
def get_response_value(text):
start = text.find('### Response:')
if start != -1:
return text[start + len('### Response:'):].strip()
return None
def llm_chain_response():
pipe = create_pipeline()
db = read_vectors_db()
prompt = creat_prompt(template)
llm = HuggingFacePipeline(pipeline=pipe)
llm_chain =create_qa_chain(prompt, llm, db)
return llm_chain