Spaces:
Runtime error
Runtime error
import os | |
import openai | |
import sys | |
sys.path.append('../..') | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
from langchain.vectorstores import DocArrayInMemorySearch | |
from langchain.document_loaders import TextLoader | |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import TextLoader | |
from langchain.document_loaders import GitLoader | |
from langchain.llms import OpenAI | |
from langchain.memory import ConversationBufferMemory, ConversationBufferWindowMemory | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.prompts import PromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, AIMessagePromptTemplate, ChatPromptTemplate | |
import datetime | |
import shutil | |
# Setting up environment variables | |
os.environ['LANGCHAIN_TRACING_V2'] = "True" | |
os.environ['LANGCHAIN_ENDPOINT'] | |
os.environ['LANGCHAIN_API_KEY'] | |
os.environ['LANGCHAIN_PROJECT'] | |
os.environ["OPENAI_API_KEY"] | |
# Function to load the data from github using langchain with string type url, string type branch, string type file_filter | |
def loader(url: str, branch: str, file_filter: str): | |
repo_path = "./github_repo" | |
if os.path.exists(repo_path): | |
shutil.rmtree(repo_path) | |
loader = GitLoader( | |
clone_url= url, | |
repo_path="./github_repo/", | |
branch=branch, | |
file_filter=lambda file_path: file_path.endswith(tuple(file_filter.split(','))) # Filter out files in Data but whole repo is cloned | |
) | |
data = loader.load() | |
return data | |
#Function to split the data into chunks using recursive character text splitter | |
def split_data(data): | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=150, | |
length_function=len, # Function to measure the length of chunks while splitting | |
add_start_index=True # Include the starting position of each chunk in metadata | |
) | |
chunks = splitter.split_documents(data) | |
return chunks | |
#Function to ingest the chunks into a vectorstore of doc | |
def ingest_chunks(chunks): | |
embedding = OpenAIEmbeddings() | |
vector_store = DocArrayInMemorySearch.from_documents(chunks, embedding) | |
repo_path = "./github_repo" | |
if os.path.exists(repo_path): | |
shutil.rmtree(repo_path) | |
return vector_store | |
#Retreival function to get the data from the database and reply to the user | |
def retreival(vector_store, k): | |
# Selecting the right model | |
current_date = datetime.datetime.now().date() | |
if current_date < datetime.date(2023, 9, 2): | |
llm_name = "gpt-3.5-turbo-0301" | |
else: | |
llm_name = "gpt-3.5-turbo" | |
#Creating LLM | |
llm = ChatOpenAI(model=llm_name, temperature=0) | |
# Define the system message template | |
#Adding CHAT HISTORY to the System template explicitly because mainly Chat history goes to Condense the Human Question with Backround (Not template), but System template goes straight the LLM Chain | |
#Explicitly adding chat history to access previous chats and answer "what is my previous question?" | |
#Great thing this also sends the chat history to the LLM Model along with the context and question | |
system_template = """You're a code summarisation assistant. Given the following extracted parts of a long document as "CONTEXT" create a final answer. | |
If you don't know the answer, just say that you don't know. Don't try to make up an answer. | |
Only If asked to create a "DIAGRAM" for code use "MERMAID SYNTAX LANGUAGE" in your answer from "CONTEXT" and "CHAT HISTORY" with a short explanation of diagram. | |
CONTEXT: {context} | |
======= | |
CHAT HISTORY: {chat_history} | |
======= | |
FINAL ANSWER:""" | |
human_template = """{question}""" | |
# ai_template = """ | |
# FINAL ANSWER:""" | |
# Create the chat prompt templates | |
messages = [ | |
SystemMessagePromptTemplate.from_template(system_template), | |
HumanMessagePromptTemplate.from_template(human_template) | |
# AIMessagePromptTemplate.from_template(ai_template) | |
] | |
PROMPT = ChatPromptTemplate.from_messages(messages) | |
#Creating memory | |
# memory = ConversationBufferMemory( | |
# memory_key="chat_history", | |
# input_key="question", | |
# output_key="answer", | |
# return_messages=True) | |
memory = ConversationBufferWindowMemory( | |
memory_key="chat_history", | |
input_key="question", | |
output_key="answer", | |
return_messages=True, | |
k=5) | |
#Creating the retriever, this can also be a contextual compressed retriever | |
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": k}) #search_type can be "similarity" or "mmr" | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
chain_type="stuff", #chain type can be refine, stuff, map_reduce | |
retriever=retriever, | |
memory=memory, | |
return_source_documents=True, #When used these 2 properties, the output gets 3 properties: answer, source_document, source_document_score and then have to speocify input and output key in memory for it to work | |
combine_docs_chain_kwargs=dict({"prompt": PROMPT}) | |
) | |
return chain | |
#Class using all above components to create QA system | |
class ConversationalResponse: | |
def __init__(self, url, branch, file_filter): | |
self.url = url | |
self.branch = branch | |
self.file_filter = file_filter | |
self.data = loader(self.url, self.branch, self.file_filter) | |
self.chunks = split_data(self.data) | |
self.vector_store = ingest_chunks(self.chunks) | |
self.chain_type = "stuff" | |
self.k = 10 | |
self.chain = retreival(self.vector_store, self.k) | |
def __call__(self, question): | |
agent = self.chain(question) | |
return agent['answer'] |