Spaces:
Runtime error
Runtime error
therealcyberlord
commited on
Commit
·
1afdd99
1
Parent(s):
0cc3712
renamed files
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import DCGAN
|
4 |
+
import SRGAN
|
5 |
+
from Utils import color_histogram_mapping, denormalize_images
|
6 |
+
import torch.nn as nn
|
7 |
+
import random
|
8 |
+
|
9 |
+
device = torch.device("cpu")
|
10 |
+
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
device = torch.device("cuda")
|
13 |
+
|
14 |
+
latent_size = 100
|
15 |
+
display_width = 450
|
16 |
+
checkpoint_path = "Checkpoints/150epochs.chkpt"
|
17 |
+
|
18 |
+
st.title("Generating Abstract Art")
|
19 |
+
st.text("start generating (left side bar)")
|
20 |
+
st.text("Made by Xingyu B.")
|
21 |
+
|
22 |
+
st.sidebar.subheader("Configurations")
|
23 |
+
seed = st.sidebar.slider('Seed', -10000, 10000, 0)
|
24 |
+
|
25 |
+
num_images = st.sidebar.slider('Number of Images', 1, 10, 1)
|
26 |
+
|
27 |
+
use_srgan = st.sidebar.selectbox(
|
28 |
+
'Apply image enhancement',
|
29 |
+
('Yes', 'No')
|
30 |
+
)
|
31 |
+
|
32 |
+
generate = st.sidebar.button("Generate")
|
33 |
+
|
34 |
+
|
35 |
+
# caching the expensive model loading
|
36 |
+
|
37 |
+
@st.cache(allow_output_mutation=True)
|
38 |
+
def load_dcgan():
|
39 |
+
model = torch.jit.load('Checkpoints/dcgan.pt', map_location=device)
|
40 |
+
return model
|
41 |
+
|
42 |
+
@st.cache(allow_output_mutation=True)
|
43 |
+
def load_esrgan():
|
44 |
+
model_state_dict = torch.load("Checkpoints/esrgan.pt", map_location=device)
|
45 |
+
return model_state_dict
|
46 |
+
|
47 |
+
# if the user wants to generate something new
|
48 |
+
if generate:
|
49 |
+
torch.manual_seed(seed)
|
50 |
+
random.seed(seed)
|
51 |
+
|
52 |
+
sampled_noise = torch.randn(num_images, latent_size, 1, 1, device=device)
|
53 |
+
generator = load_dcgan()
|
54 |
+
generator.eval()
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
fakes = generator(sampled_noise).detach()
|
58 |
+
|
59 |
+
# use srgan for super resolution
|
60 |
+
if use_srgan == "Yes":
|
61 |
+
# restore to the checkpoint
|
62 |
+
st.write("Using DCGAN then ESRGAN upscale...")
|
63 |
+
esrgan_generator = SRGAN.GeneratorRRDB(channels=3, filters=64, num_res_blocks=23).to(device)
|
64 |
+
esrgan_checkpoint = load_esrgan()
|
65 |
+
esrgan_generator.load_state_dict(esrgan_checkpoint)
|
66 |
+
|
67 |
+
esrgan_generator.eval()
|
68 |
+
with torch.no_grad():
|
69 |
+
enhanced_fakes = esrgan_generator(fakes).detach().cpu()
|
70 |
+
color_match = color_histogram_mapping(enhanced_fakes, fakes.cpu())
|
71 |
+
|
72 |
+
for i in range(len(color_match)):
|
73 |
+
# denormalize and permute to correct color channel
|
74 |
+
st.image(denormalize_images(color_match[i]).permute(1, 2, 0).numpy(), width=display_width)
|
75 |
+
|
76 |
+
|
77 |
+
# default setting -> vanilla dcgan generation
|
78 |
+
if use_srgan == "No":
|
79 |
+
fakes = fakes.cpu()
|
80 |
+
st.write("Using DCGAN Model...")
|
81 |
+
for i in range(len(fakes)):
|
82 |
+
st.image(denormalize_images(fakes[i]).permute(1, 2, 0).numpy(), width=display_width)
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
utils.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
import torchvision.utils as vutils
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from skimage.exposure import match_histograms
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# contains utility functions that we need in the main program
|
9 |
+
|
10 |
+
# matches the color histogram of original and the super resolution output
|
11 |
+
def color_histogram_mapping(images, references):
|
12 |
+
matched_list = []
|
13 |
+
for i in range(len(images)):
|
14 |
+
matched = match_histograms(images[i].permute(1, 2, 0).numpy(), references[i].permute(1, 2, 0).numpy(),
|
15 |
+
channel_axis=-1)
|
16 |
+
matched_list.append(matched)
|
17 |
+
return torch.tensor(np.array(matched_list)).permute(0, 3, 1, 2)
|
18 |
+
|
19 |
+
|
20 |
+
def visualize_generations(seed, images):
|
21 |
+
plt.figure(figsize=(16, 16))
|
22 |
+
plt.title(f"Seed: {seed}")
|
23 |
+
plt.axis("off")
|
24 |
+
plt.imshow(np.transpose(vutils.make_grid(images, padding=2, nrow=5, normalize=True), (2, 1, 0)))
|
25 |
+
plt.show()
|
26 |
+
|
27 |
+
|
28 |
+
# denormalize the images for proper display
|
29 |
+
def denormalize_images(images):
|
30 |
+
mean= [0.5, 0.5, 0.5]
|
31 |
+
std= [0.5, 0.5, 0.5]
|
32 |
+
inv_normalize = transforms.Normalize(
|
33 |
+
mean=[-m / s for m, s in zip(mean, std)],
|
34 |
+
std=[1 / s for s in std]
|
35 |
+
)
|
36 |
+
return inv_normalize(images)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|