Spaces:
Runtime error
Runtime error
from torch import nn | |
import torch | |
import torch.nn.functional as F | |
# Generator Code | |
ngf = 64 | |
num_channels = 3 | |
class Generator(nn.Module): | |
def __init__(self, latent_size): | |
super(Generator, self).__init__() | |
self.latent_size = latent_size | |
self.conv1 = nn.ConvTranspose2d( | |
self.latent_size, ngf*8, 4, 1, 0, bias=False) | |
self.bn1 = nn.BatchNorm2d(ngf*8) | |
self.conv2 = nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False) | |
self.bn2 = nn.BatchNorm2d(ngf*4) | |
self.conv3 = nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False) | |
self.bn3 = nn.BatchNorm2d(ngf*2) | |
self.conv4 = nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False) | |
self.bn4 = nn.BatchNorm2d(ngf) | |
self.conv5 = nn.ConvTranspose2d(ngf, num_channels, 4, 2, 1, bias=False) | |
def forward(self, x): | |
x = F.relu(self.bn1(self.conv1(x)), inplace=True) | |
x = F.relu(self.bn2(self.conv2(x)), inplace=True) | |
x = F.relu(self.bn3(self.conv3(x)), inplace=True) | |
x = F.relu(self.bn4(self.conv4(x)), inplace=True) | |
return torch.tanh(self.conv5(x)) |