Spaces:
Runtime error
Runtime error
import time | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from transformers import AutoModelForCTC, AutoProcessor | |
import pyaudio | |
import soundfile as sf | |
import resampy | |
from queue import Queue | |
from threading import Thread, Event | |
def _read_frame(stream, exit_event, queue, chunk): | |
while True: | |
if exit_event.is_set(): | |
print(f'[INFO] read frame thread ends') | |
break | |
frame = stream.read(chunk, exception_on_overflow=False) | |
frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk] | |
queue.put(frame) | |
def _play_frame(stream, exit_event, queue, chunk): | |
while True: | |
if exit_event.is_set(): | |
print(f'[INFO] play frame thread ends') | |
break | |
frame = queue.get() | |
frame = (frame * 32767).astype(np.int16).tobytes() | |
stream.write(frame, chunk) | |
class ASR: | |
def __init__(self, opt): | |
self.opt = opt | |
self.play = opt.asr_play | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.fps = opt.fps # 20 ms per frame | |
self.sample_rate = 16000 | |
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000) | |
self.mode = 'live' if opt.asr_wav == '' else 'file' | |
if 'esperanto' in self.opt.asr_model: | |
self.audio_dim = 44 | |
elif 'deepspeech' in self.opt.asr_model: | |
self.audio_dim = 29 | |
else: | |
self.audio_dim = 32 | |
# prepare context cache | |
# each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms | |
self.context_size = opt.m | |
self.stride_left_size = opt.l | |
self.stride_right_size = opt.r | |
self.text = '[START]\n' | |
self.terminated = False | |
self.frames = [] | |
# pad left frames | |
if self.stride_left_size > 0: | |
self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size) | |
self.exit_event = Event() | |
self.audio_instance = pyaudio.PyAudio() | |
# create input stream | |
if self.mode == 'file': | |
self.file_stream = self.create_file_stream() | |
else: | |
# start a background process to read frames | |
self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, output=False, frames_per_buffer=self.chunk) | |
self.queue = Queue() | |
self.process_read_frame = Thread(target=_read_frame, args=(self.input_stream, self.exit_event, self.queue, self.chunk)) | |
# play out the audio too...? | |
if self.play: | |
self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=False, output=True, frames_per_buffer=self.chunk) | |
self.output_queue = Queue() | |
self.process_play_frame = Thread(target=_play_frame, args=(self.output_stream, self.exit_event, self.output_queue, self.chunk)) | |
# current location of audio | |
self.idx = 0 | |
# create wav2vec model | |
print(f'[INFO] loading ASR model {self.opt.asr_model}...') | |
self.processor = AutoProcessor.from_pretrained(opt.asr_model) | |
self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device) | |
# prepare to save logits | |
if self.opt.asr_save_feats: | |
self.all_feats = [] | |
# the extracted features | |
# use a loop queue to efficiently record endless features: [f--t---][-------][-------] | |
self.feat_buffer_size = 4 | |
self.feat_buffer_idx = 0 | |
self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device) | |
# TODO: hard coded 16 and 8 window size... | |
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding | |
self.tail = 8 | |
# attention window... | |
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding... | |
# warm up steps needed: mid + right + window_size + attention_size | |
self.warm_up_steps = self.context_size + self.stride_right_size + 8 + 2 * 3 | |
self.listening = False | |
self.playing = False | |
def listen(self): | |
# start | |
if self.mode == 'live' and not self.listening: | |
print(f'[INFO] starting read frame thread...') | |
self.process_read_frame.start() | |
self.listening = True | |
if self.play and not self.playing: | |
print(f'[INFO] starting play frame thread...') | |
self.process_play_frame.start() | |
self.playing = True | |
def stop(self): | |
self.exit_event.set() | |
if self.play: | |
self.output_stream.stop_stream() | |
self.output_stream.close() | |
if self.playing: | |
self.process_play_frame.join() | |
self.playing = False | |
if self.mode == 'live': | |
self.input_stream.stop_stream() | |
self.input_stream.close() | |
if self.listening: | |
self.process_read_frame.join() | |
self.listening = False | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.stop() | |
if self.mode == 'live': | |
# live mode: also print the result text. | |
self.text += '\n[END]' | |
print(self.text) | |
def get_next_feat(self): | |
# return a [1/8, 16] window, for the next input to nerf side. | |
while len(self.att_feats) < 8: | |
# [------f+++t-----] | |
if self.front < self.tail: | |
feat = self.feat_queue[self.front:self.tail] | |
# [++t-----------f+] | |
else: | |
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0) | |
self.front = (self.front + 2) % self.feat_queue.shape[0] | |
self.tail = (self.tail + 2) % self.feat_queue.shape[0] | |
# print(self.front, self.tail, feat.shape) | |
self.att_feats.append(feat.permute(1, 0)) | |
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16] | |
# discard old | |
self.att_feats = self.att_feats[1:] | |
return att_feat | |
def run_step(self): | |
if self.terminated: | |
return | |
# get a frame of audio | |
frame = self.get_audio_frame() | |
# the last frame | |
if frame is None: | |
# terminate, but always run the network for the left frames | |
self.terminated = True | |
else: | |
self.frames.append(frame) | |
# put to output | |
if self.play: | |
self.output_queue.put(frame) | |
# context not enough, do not run network. | |
if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size: | |
return | |
inputs = np.concatenate(self.frames) # [N * chunk] | |
# discard the old part to save memory | |
if not self.terminated: | |
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):] | |
logits, labels, text = self.frame_to_text(inputs) | |
feats = logits # better lips-sync than labels | |
# save feats | |
if self.opt.asr_save_feats: | |
self.all_feats.append(feats) | |
# record the feats efficiently.. (no concat, constant memory) | |
if not self.terminated: | |
start = self.feat_buffer_idx * self.context_size | |
end = start + feats.shape[0] | |
self.feat_queue[start:end] = feats | |
self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size | |
# very naive, just concat the text output. | |
if text != '': | |
self.text = self.text + ' ' + text | |
# will only run once at ternimation | |
if self.terminated: | |
self.text += '\n[END]' | |
# print(self.text) | |
if self.opt.asr_save_feats: | |
print(f'[INFO] save all feats for training purpose... ') | |
feats = torch.cat(self.all_feats, dim=0) # [N, C] | |
# print('[INFO] before unfold', feats.shape) | |
window_size = 16 | |
padding = window_size // 2 | |
feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M] | |
feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1] | |
unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1] | |
unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C] | |
# print('[INFO] after unfold', unfold_feats.shape) | |
# save to a npy file | |
if 'esperanto' in self.opt.asr_model: | |
output_path = self.opt.asr_wav.replace('.wav', '_eo.npy') | |
else: | |
output_path = self.opt.asr_wav.replace('.wav', '.npy') | |
np.save(output_path, unfold_feats.cpu().numpy()) | |
print(f"[INFO] saved logits to {output_path}") | |
def create_file_stream(self): | |
stream, sample_rate = sf.read(self.opt.asr_wav) # [T*sample_rate,] float64 | |
stream = stream.astype(np.float32) | |
if stream.ndim > 1: | |
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.') | |
stream = stream[:, 0] | |
if sample_rate != self.sample_rate: | |
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.') | |
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate) | |
print(f'[INFO] loaded audio stream {self.opt.asr_wav}: {stream.shape}') | |
return stream | |
def create_pyaudio_stream(self): | |
import pyaudio | |
print(f'[INFO] creating live audio stream ...') | |
audio = pyaudio.PyAudio() | |
# get devices | |
info = audio.get_host_api_info_by_index(0) | |
n_devices = info.get('deviceCount') | |
for i in range(0, n_devices): | |
if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0: | |
name = audio.get_device_info_by_host_api_device_index(0, i).get('name') | |
print(f'[INFO] choose audio device {name}, id {i}') | |
break | |
# get stream | |
stream = audio.open(input_device_index=i, | |
format=pyaudio.paInt16, | |
channels=1, | |
rate=self.sample_rate, | |
input=True, | |
frames_per_buffer=self.chunk) | |
return audio, stream | |
def get_audio_frame(self): | |
if self.mode == 'file': | |
if self.idx < self.file_stream.shape[0]: | |
frame = self.file_stream[self.idx: self.idx + self.chunk] | |
self.idx = self.idx + self.chunk | |
return frame | |
else: | |
return None | |
else: | |
frame = self.queue.get() | |
# print(f'[INFO] get frame {frame.shape}') | |
self.idx = self.idx + self.chunk | |
return frame | |
def frame_to_text(self, frame): | |
# frame: [N * 320], N = (context_size + 2 * stride_size) | |
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
result = self.model(inputs.input_values.to(self.device)) | |
logits = result.logits # [1, N - 1, 32] | |
# cut off stride | |
left = max(0, self.stride_left_size) | |
right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input. | |
# do not cut right if terminated. | |
if self.terminated: | |
right = logits.shape[1] | |
logits = logits[:, left:right] | |
# print(frame.shape, inputs.input_values.shape, logits.shape) | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = self.processor.batch_decode(predicted_ids)[0].lower() | |
# for esperanto | |
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]']) | |
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z']) | |
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()])) | |
# print(predicted_ids[0]) | |
# print(transcription) | |
return logits[0], predicted_ids[0], transcription # [N,] | |
def run(self): | |
self.listen() | |
while not self.terminated: | |
self.run_step() | |
def clear_queue(self): | |
# clear the queue, to reduce potential latency... | |
print(f'[INFO] clear queue') | |
if self.mode == 'live': | |
self.queue.queue.clear() | |
if self.play: | |
self.output_queue.queue.clear() | |
def warm_up(self): | |
self.listen() | |
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s') | |
t = time.time() | |
for _ in range(self.warm_up_steps): | |
self.run_step() | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t = time.time() - t | |
print(f'[INFO] warm-up done, actual latency = {t:.6f}s') | |
self.clear_queue() | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--wav', type=str, default='') | |
parser.add_argument('--play', action='store_true', help="play out the audio") | |
parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto') | |
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self') | |
parser.add_argument('--save_feats', action='store_true') | |
# audio FPS | |
parser.add_argument('--fps', type=int, default=50) | |
# sliding window left-middle-right length. | |
parser.add_argument('-l', type=int, default=10) | |
parser.add_argument('-m', type=int, default=50) | |
parser.add_argument('-r', type=int, default=10) | |
opt = parser.parse_args() | |
# fix | |
opt.asr_wav = opt.wav | |
opt.asr_play = opt.play | |
opt.asr_model = opt.model | |
opt.asr_save_feats = opt.save_feats | |
if 'deepspeech' in opt.asr_model: | |
raise ValueError("DeepSpeech features should not use this code to extract...") | |
with ASR(opt) as asr: | |
asr.run() |