Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import requests | |
import json | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from configs import ip, api_port, model_path | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
class Linly: | |
def __init__(self, mode='api', model_path="Linly-AI/Chinese-LLaMA-2-7B-hf") -> None: | |
# mode = api need | |
# 定义设置的api的服务器,首先记得运行Linly-api-fast.py 填入ip地址和端口号 | |
self.url = f"http://{ip}:{api_port}" # local server: http://ip:port | |
self.headers = { | |
"Content-Type": "application/json" | |
} | |
self.data = { | |
"question": "北京有什么好玩的地方?" | |
} | |
# 全局设定的prompt | |
self.prompt = '''请用少于25个字回答以下问题 ''' | |
self.mode = mode | |
if mode != 'api': | |
self.model, self.tokenizer = self.init_model(model_path) | |
self.history = [] | |
def init_model(self, path = "Linly-AI/Chinese-LLaMA-2-7B-hf"): | |
model = AutoModelForCausalLM.from_pretrained(path, device_map="cuda:0", | |
torch_dtype=torch.bfloat16, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=False, trust_remote_code=True) | |
return model, tokenizer | |
def generate(self, question, system_prompt=""): | |
if self.mode != 'api': | |
self.data["question"] = self.message_to_prompt(question, system_prompt) | |
inputs = self.tokenizer(self.data["question"], return_tensors="pt").to("cuda:0") | |
try: | |
generate_ids = self.model.generate(inputs.input_ids, | |
max_new_tokens=2048, | |
do_sample=True, | |
top_k=20, | |
top_p=0.84, | |
temperature=1, | |
repetition_penalty=1.15, | |
eos_token_id=2, | |
bos_token_id=1, | |
pad_token_id=0) | |
response = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
response = response.split("### Response:")[-1] | |
return response | |
except: | |
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n" | |
elif self.mode == 'api': | |
return self.predict_api(question) | |
def message_to_prompt(self, message, system_prompt=""): | |
system_prompt = self.prompt + system_prompt | |
for interaction in self.history: | |
user_prompt, bot_prompt = str(interaction[0]).strip(' '), str(interaction[1]).strip(' ') | |
system_prompt = f"{system_prompt} User: {user_prompt} Bot: {bot_prompt}" | |
prompt = f"{system_prompt} ### Instruction:{message.strip()} ### Response:" | |
return prompt | |
def predict_api(self, question): | |
# FastAPI Predict 调用API来进行预测 | |
self.data["question"] = question | |
headers = {'Content-Type': 'application/json'} | |
data = {"prompt": question} | |
response = requests.post(url=self.url, headers=headers, data=json.dumps(data)) | |
return response.json()['response'] | |
def chat(self, system_prompt, message, history): | |
self.history = history | |
prompt = self.message_to_prompt(message, system_prompt) | |
response = self.generate(prompt) | |
self.history.append([message, response]) | |
return response, self.history | |
def clear_history(self): | |
# 清空历史记录 | |
self.history = [] | |
def test(): | |
llm = Linly(mode='offline',model_path='../Linly-AI/Chinese-LLaMA-2-7B-hf') | |
answer = llm.generate("如何应对压力?") | |
print(answer) | |
if __name__ == '__main__': | |
test() | |